
Journal of Information Technology Education: Volume 11, 2012
Innovations in Practice

Accelerating Software Development through Agile
Practices - A Case Study of a Small-scale,

Time-intensive Web Development Project at a
College-level IT Competition

Xuesong (Sonya) Zhang
California State Polytechnic

University, Pomona, CA, USA
xszhang@csupomona.edu

Bradley Dorn
California State University,

Fresno, CA, USA
bdorn@csufresno.edu

Executive Summary
Agile development has received increasing interest both in industry and academia due to its bene-
fits in developing software quickly, meeting customer needs, and keeping pace with the rapidly
changing requirements. However, agile practices and scrum in particular have been mainly tested
in mid- to large-size projects. In this paper, we present findings from a case study of agile prac-
tices in a small-scale, time-intensive web development project at a college-level IT competition.
Based on the observation of the development process, the interview of the project team, and the
study of relevant documents, we describe how agile practices, such as daily scrums, backlogs, and
sprints, were successfully adopted to the project development. We also describe several support-
ing activities that the team employed, including cross-leveling of knowledge, socialization, and
multiple communication modes. Finally, we discuss the benefits and challenges of implementing
agile practices in the case project reported, as well as contribution and limitation of our findings.

Keywords: Agile, Scrum, Software development, Project management, Web application.

Introduction
Created to be a lightweight software development method by 17 software developers at a ski re-
sort a decade ago (“Agile Software Development,” 2011), agile development has received in-
creasing interest both in industry and academia due to its benefits in developing software more
quickly and at lower costs, meeting customer needs, and keeping pace with the rapidly changing
requirements. Agile development aims for customer satisfaction through early and continuous
delivery of useful software components developed by an interactive process with the design point
that uses minimum requirements. Using agile methods helps refine feasibility and supports the
process for getting rapid feedback as functionality is introduced. Developers can adjust as they

better clarify unclear requirements. The
rate of change in the business world has
accelerated dramatically over the past
decade. In order to remain competitive,
companies developing software need a
process that can help them to be more
efficient and effective.

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact HPublisher@InformingScience.orgH to re-
quest redistribution permiss

Traditional software development meth-
odology such as waterfall is inflexible,
expensive, and requires extensive plan-ion.

Editor: Keith Willoughby

mailto:xszhang@csupomona.edu
mailto:bdorn@csufresno.edu

Accelerating Software Development

ning and rigid adherence to the sequentially based steps in the process (Boehm, 2002). In con-
trast, agile methods address the challenge of unpredictable and ever-changing needs and require-
ments in software development and deliver value to users as soon as possible (Nerur &
Balijepally, 2007). Table 1 summarizes these differences.

Table 1. Traditional and Agile Perspectives on Software Development
(Nerur & Balijepally, 2007)

 Traditional view Agile perspective

Design Process Deliberate and formal, linear
sequence of steps, separate for-
mulation and implementation,
rule-driven

Emergent, iterative and exploratory, know-
ing and action inseparable, beyond formal
rules

Goal Optimization Adaptation, flexibility, responsiveness

Problem-solving
process

Selection of the best means to
accomplish a given end through
well-planned, formalized activi-
ties

Learning through experimentation and in-
trospection, constantly reframing the prob-
lem and its solution

View of the envi-
ronment

Stable, predictable Turbulent, difficult to predict

Type of learning Single-loop/adaptive Double-loop/generative

Key characteristics Control and direction

Avoids conflict

Formalizes innovation

Manager is controller

Design precedes implementation

Collaboration and communication; inte-
grates different worldviews

Embraces conflict and dialectics

Encourages exploration and creativity; op-
portunistic

Manager is facilitator

Design and implementation are inseparable
and evolve iteratively

Rationality Technical/functional Substantial

Theoretical and/or
philosophical roots

Logical positivism, scientific
method

Action learning, John Dewey’s pragmatism,
phenomenology

Primary agile practices include:

• Rapid application development (RAD) methodology – RAD methodology emphasizes
extensive user involvement in the rapid and evolutionary construction of working proto-
types of a system to accelerate the systems development process.

• Extreme Programming (XP) methodology – XP methodology breaks down a project into
small phases, and developers cannot continue on to the next phase until the first phase is
complete.

• Rational unified process (RUP) methodology – owned by IBM, RUP methodology pro-
vides a framework for breaking down the development of software into four gates: Incep-
tion, Elaboration, Construction, and Transition. Each gate consists of executable interac-
tions of the software in development. A project stays in a gate until the stakeholders are
satisfied, and then moves to the next.

26

Zhang & Dorn

• Scrum methodology - Scrum methodology uses small, self-organizing teams to produce
small pieces of deliverable software using sprints (usually 30-day intervals) to achieve an
appointed goal, starting with planning and ending with a review. Features to be imple-
mented in the system are registered in a backlog. Then, the product owner decides which
backlog items should be developed in the following sprint. Team members coordinate
their work in a daily stand-up meeting. One team member, the scrum master, is in charge
of solving problems that stop the team from working effectively (Schwaber & Beedle,
2001).

Research Method: Case Study
Case study research is appropriate to investigate a phenomenon in its real-life context and to an-
swer how and why questions (Yin, 2002). Case study method is widely used in Software Engi-
neering and Information Systems (IS) research since it studies contemporary phenomena in its
natural context (Runeson & Höst, 2009). This case study examines the value of agile practices in
a group-based, small-scale, time-intensive web development project through discovering the fol-
lowing:

1. The particular agile practices adopted by the project team in a small-scale, time-intensive
web development project, and the manner in which they were used;

2. Additional supporting activities;
3. Benefits and challenges.

Data were collected using a qualitative, interpretive approach, including observation, interview,
and documentation. Team meetings and project development life cycle were observed. Meeting
notes, Skype (daily scrum) messages, and project documentation were reviewed and analyzed.
Informal interviews were conducted to collect related activities or tasks and further clarify issues.

IT Competition Project Case and Rules
The Information Technology Competition (ITC) hosted by the Management Information Systems
Student Association (MISSA) at California State Polytechnic University, Pomona is an annual
event where students from California universities and colleges gather to demonstrate and compete
their expertise in the Information Technology field. Teams of 3-5 students are given a real-life
business project created by a company in the business industry to work on within a two-week
time period. Their work is then analyzed, judged, and critiqued by industry professionals. There
are five case categories in the competition:

• Business Systems Analysis
• Computer Forensics
• Computer Programming
• Web Applications Development
• Telecommunications

This case study focuses on a web project in the Web Application Development category. Creating
the next generation of high-impact, effective web systems requires technical expertise combined
with artistic talent. This event encompasses elements of visual design, functionality, usability,
creativity, and engineering. This category requires a combined knowledge and skills of both web
design and application development. The project assignment is to develop a community oriented
web site that allows registered users to submit source code for review by other registered users.
The high-level system features and workflow for the web site is illustrated in Figure 1.

27

Accelerating Software Development

Figure 1. High-level System Features and Workflow

Forming and Structuring Project Team
Team composition in an agile project is usually self-organizing and cross-functional. The project
team is self-organizing in that the team leader does not decide which person will do which task or
how a problem will be solved; the team as a whole makes such decision instead. The team is
cross-functional so that everyone necessary to take a task from idea to implementation is in-
volved. The self-organizing and cross-functional characteristic of agile teams also makes the
teams capable of great speed and agility and especially good at socialization and communication.
The team is usually supported by two specific individuals or roles: a scrum master and a product
owner. The scrum master can be thought of as a project manager for the team, maintaining the
processes and helping team members use the scrum framework to perform at their highest level.
The product owner represents the business and stakeholders, such as customers or users, and
guides the team toward building the right product. In this case study, four students from a Cali-
fornia State University majoring in Information Systems volunteered, formed the project team,
and represented the university in the competition.

Traditional software development methodologies usually have very specific, laid out develop-
ment plans. Because of the nature of the team and limited project time frame in this case study, it
was not practical for the project team to spend a great deal of time on project management details
in advance, such as which team member would develop which aspect of the project; instead, the
project team decided to adopt a more flexible approach - agile practices. Scrum, in particular, was
used because of its proficiency in developing in small, self-organizing, and cross-functional
groups, as well as its best practices for rapid delivery of high-quality software. The formed ITC
team self-structured and defined new roles for each member, including a Team Leader, a Data-
base Administrator, a Web Design Specialist, and an Implementation Lead. While these roles are
assigned based upon each team member’s assessed strength and expertise, it does not translate to
exclusive responsibilities. For example, the team leader also participated in web design and cod-
ing, and the database admin also participated in coding and testing, and both contributed to the
interface design and documenting. Also, decision-making and task assignment were made via
mutual agreement among the team members. The team leader acted as a scrum master, and the
competition’s case document writer (an industry professional) served as the product owner.

28

Zhang & Dorn

Implementing Effective Scrum Practices

Daily scrum (via Skype)
Daily scrum meetings are typically held at the same time everyday. During a daily scrum meet-
ing, each team member answered the following questions:

• What have you done today?
• What are you planning to do tomorrow?
• Do you have any problems preventing you from accomplishing your goal?

By focusing on what each member accomplished that day and will accomplish the next day the
team gains an excellent understanding of what work has been done, what work remains, and
makes commitments to each other. This makes it possible for all members of the team to effi-
ciently gain a perspective of how the system works and to quickly adapt to developing in an area
where another team member left off. Traditional methods usually do this using extensive docu-
mentation, planning, and rigid work distribution.

The team chose Skype as the daily scrum media because it allowed team members to meet online
regardless of their physical location, to easily collaborate via instant messaging, voice, and video
conference calls, and to share documents via file transfer - all free of charge. Every day at a spe-
cific time (usually 10:30pm) the team met online via Skype for a short period of time (15 - 30
min) and discussed the project status (Figure 2).

Team members usually stayed online after the daily scrum to extend discussion or solve problems
together. The team also used Email to clarify questions and answers before and after the daily
scrum meeting. In addition, the team held face-to-face meetings once every few days to do in-
depth analysis and discussion.

Figure 2. Daily Scrum via Skype

29

Accelerating Software Development

Backlogs
The scrum method uses two types of backlogs to keep a record of the list of work throughout the
entire project life cycle. The Product backlog is a high-level, master list of all functionality de-
sired in the working product. Creating a product backlog usually involves the process of trans-
forming user centric specs to technical tasks. The product backlog is allowed to grow and change
as more is learned about the product and its customers. In this case study, while the content of the
Product backlog and business value of each listed item were derived from the project case re-
quirement document provided by the ITC organizer (written by the product owner) and main-
tained and updated by the team leader, the associated development effort is set by the team as a
whole.

The Sprint Backlogs on the other hand prioritize and expand each Product backlog item into one
or more detailed tasks that the team can effectively share and commit to completing within the
sprint iteration. In this case study, the project team leader (also the scrum master) maintained the
backlog and updated it to reflect the task status and progress (e.g., complete, testing, or imple-
mented). The team added or removed tasks during the iteration when necessary.

Sprints
A sprint is a basic unit in the scrum development methodology and other agile development me-
thodologies. Sprints usually last between one week to one month and are restricted to a specific
duration of a constant length. There are usually two types of sprint meetings. Sprint planning

Figure 3. Project Management in a Microsoft Project Gantt chart

30

Zhang & Dorn

meetings are usually held at the beginning of each sprint to decide desired outcome (a commit-
ment to set of features to be developed) in the iteration. A sprint review meeting is usually held
after each sprint, when newly developed functionality is presented/demonstrated and reviewed.
Modifications are noted and added to the future Sprint backlog.

In this case study, due to the 2-week time constraint for the entire project, each sprint had dura-
tion of only 3-5 days. Both sprint planning and review meetings are held via face-to-face meet-
ings. The team also tried to clarify as many issues as possible via Email before the meeting to
keep it short and concise.

The team used Microsoft Project as the project management tool to maintain the sprint backlogs
and to facilitate sprint planning, monitoring, and reviewing. A common project management tool
provided by Microsoft Project is the Gantt chart. A Gantt chart is a simple bar chart that depicts
project tasks against a calendar. On a Gantt chart, tasks are listed vertically and the project’s time
frame is listed horizontally. A Gantt chart works well for representing the project schedule. It also
shows actual progress of tasks against the planned duration. Figure 3 shows the project manage-
ment using a Gantt chart.

As shown in the Gantt chart in Figure 3, the team divided the project into 3 sprints:

Analysis Sprint - In the analysis sprint, the team applied Use case (user centric specs in product
backlog) to describe system behavior from an actor's point of view as scenario-driven threads
through the functional requirements. Figure 4 shows an example of the Use case for the scenario
where a user comments on a post.

Figure 4. Use Case for a User Comments on a Post

Design Sprint - The design sprint includes database design and web interface design. The data-
base design (technical tasks in product backlog) in this sprint is mainly a conceptual design. The
process includes creating the data requirement document (i.e., describe what data items will be
stored in the database and how the various data items relate to one another), analysis (i.e., define
detailed attributes of the data and constraints), and constructing ERD (conceptual data model) and

31

Accelerating Software Development

Data dictionary (logical schema). After the database was structured, the web interface was proto-
typed and designed to coordinate the functionalities and tasks specified in the sprint backlog, also
to be understandable, intuitive, and simple to users. Figure 5 shows the Entity-Relationship Dia-
gram for the project.

Figure 5. Entity-Relationship Diagram

Implementation Sprint - The implementation sprint includes database implementation and func-
tionality implementation. The database implementation was accomplished using SQL statements.
The process includes implementing the database (e.g., create database, set users and privileges,
create tables, set constraints, etc.), populating each table with specific data (e.g., configuration
and testing data), and optimizing the database structure and performance (e.g., normalize, index,
cache, monitor). After the database was implemented and populated with data, functionalities
shown in Figure 1 (High-level System Features and Workflow) were coded, tested, and imple-
mented.

In this case study, the software product (called “Java Sniper” because it provides community-
based review service for source codes written in Java) was developed using an open source
LAMP (Linux, Apache, MySQL, and PHP) environment. The base user interface, dynamic page
contents, and reusable functions of Java Sniper were created using HTML, CSS, Javacript,
AJAX, and PHP with Adobe Dreamweaver CS4 and Adobe Photoshop CS4. The data is stored in
a MySQL database and accessed via embedded SQL within PHP pages. The working product is
cross-platform – it can be hosted on various operating systems including Linux and Windows, it
can also be implemented in various web servers including Apache and Microsoft IIS. Users can
access the web site via various web browsers, including IE, Firefox, and Safari. Figure 6 shows
the system architecture.

32

Zhang & Dorn

Figure 6. System Architecture

Supporting Activities
In addition to the common scrum practices, the team also employed several supporting activities:

Cross-leveling of knowledge
As opposed to a traditional development team, a scrum team is by nature self-organizing and
cross-functional. Although different roles are assigned based upon the team member’s strength
and expertise, each member acts as a middle manager to bridge the difference between the theory
(what ought to be) and the reality (what can be done) to each other. They translate theory into
practical requirements, which are then tested in the reality. Any contradiction is communicated
and resolved. In this case study, team members shared knowledge and skills in web design and
development, database design and management, and other relevant areas to help each other ac-
complish the tasks.

Socialization
The effects of socialization depend upon the team members’ interpersonal skills, trust, and inter-
action with each other. In this case study, all team members came from the same class, therefore
they were somewhat familiar with each other before the project began. However, none of the
team members had any sort of social or professional relationship with any of the other team
members prior to the start of the course. The team members did not interact with one another spe-
cifically, though they were familiar with each other’s appearance and course work. These rela-
tionships are a good representative for team members that do not face significant cultural or
communicative barriers but have not worked together before.

Throughout the project, the team members got to know each other more and became friends. In
addition to working on the project together, they also shared common values and interests as col-
lege students. The team commented that the establishment of successful and satisfying relation-
ship during socialization helped improving collaboration and productivity.

33

Accelerating Software Development

Multiple communication modes
In agile practices, usually several different kinds of communication are available that can also be
applied in parallel, i.e., individual and conference telephone, teleconference, videoconference,
email, instant messaging, blog, wiki, and desktop sharing. In this case study, the team utilized
multiple communication channels including face-to-face meetings, Email, Skype-supported in-
stant messaging and teleconference, and file transfer.

The team recognized the importance of the fact that each communication avenue provided a valu-
able way for the team to exchange information. Each communication avenue had its strong
points, and weak points. For example, though face-to-face communication can convey many
ideas quickly, it is ineffective when describing code, syntax, or sharing files.

Specifically, the team pointed out that face-to-face meetings helped the team to focus on the dis-
cussion without other disruptions and also provided more information in terms of body language,
subtle personality and demeanor, and lively exchange of ideas or conversation; while online
communications such as Skype meetings provided more flexibility including meeting late night or
geographically separated, looking up information online, or sharing important files and docu-
ments while chatting. Email and chatting was the least invasive and most flexible, but was usually
not as effective as other methods. Therefore, both communication channels facilitated teamwork
in various aspects.

Discussion
The project team successfully delivered a working software product (i.e., Java Sniper) at the end
of the 2-week time frame. The team demonstrated the final product to the judges (industry profes-
sionals) and won second place in the web development category.

The team also compared the efficiency of Java Sniper with other popular code review systems on
the market (e.g., Codestriker and Reviewboard) by conducting three different types of testing –
installation, code submission, and code review tests. The installation test involved creating a da-
tabase, installing and configuring scripts, modules, and libraries, and getting the system up and
running. The code submission test involved navigating to the submission page, loading the page,
filling in the information required, and submitting four files containing Java source code designed
to output the text "Hello World!" for review. The code review test involved accessing the submit-
ted files, reading through it (the files were all very small and reading time was almost negligible),
and writing and submitting the review (time for writing review was recorded separately because
writing time should be independent of all three systems). The testing results (Table 2) show that
Java Sniper is the most efficient of all three systems in terms of installation, code submission, and
code review.

Table 2. Efficiency Testing

Code Review
Software

Language Installation
Test

Code Submis-
sion Test

Code Review
Test (writing
time excluded)

Allow submitting
multiple source
files as one project

Codestriker Python 45 min 12 min 20 sec 5 min 32 sec No

Reviewboard Perl 20 min 2 min 58 sec 2 min 4 sec No

Java Sniper PHP 15 min 47 sec 35 sec Yes

During both project presentation and interview, the team affirmed that the agile practices em-
ployed were a critical success factor for them to achieve the goal of developing a good quality

34

Zhang & Dorn

software product that satisfied the case requirements within limited time frame; the product
would have been completed with fewer features or less quality otherwise. The team stated that the
agile practices benefited the project in the following aspects:

Increased quality of the deliverables
Agile technologies feature more frequent delivery of smaller, valuable increments and build qual-
ity in rather than add it in at the end of the project. Because of the strict time and scope limit,
quality is more easily monitored, managed, and achieved by the end of the iteration. In this case
study, team members often reminded each other during daily scrums and sprint meetings to stay
on track, prioritize, and focus on the main features specified in the requirement document. As the
result, the team was able to deliver a satisfying software product within the limited time frame.

Better change management
A project’s requirements will change at some point of time. In scrum, change is embraced and
new requirements will be evaluated against existing ones when planning the next sprint. The
business and product owner are actively involved in this process, making sure the delivered fea-
tures are actually useful and valuable to end users and business. Even though in this case study,
the project requirements were mostly defined in the case document in advance, during the analy-
sis sprint the team still found some issues that were unclear, such as the expectation of utilizing
open source components and services and the weight of additional features that is not explicitly
specified in the case document. After clarifying these issues with the case writer the team quickly
changed the technical specs accordingly before moving into the design sprint.

More efficient workflow
By using short iterations (i.e., daily scrum and sprints), the team was able to calculate/estimate
the time and resources needed and track the development progress for each task in a clearer and
more accurate way. As the result, the team was able to be more in control of the project schedule
and status and work more efficiently. In this case study, the team used Microsoft Project to plan
and manage the time and resources needed for each critical project task and made sure that the
tasks were accomplished by the end of the assigned iteration.

Increased innovation
Whenever a new and innovative idea was discovered, the team could quickly share and commu-
nicate with the business and production owner and possibly build it straight into the next sprint.
In this case study, when the team found out that open source components and services were en-
couraged in the analysis sprint, they decided to implement an open source tool called GeSHi (Ge-
neric Syntax Highlighter) to process each source code file when it was submitted for review and
then saved in the database to be displayed on the Source Code Viewing page later in different
colors and fonts according to the programming syntax. This feature provides the reviewers with a
consistent code formatting and/or syntax highlighting and helps them better recognize problem
points in the code. And because the tool was open source, the team saved significant time and
effort compared to developing it from scratch.

Like any other agile practitioner, the team in this case study also encountered several challenges.
Because the size of the team was fairly small and all the members were college students, the daily
scrum or sprint meetings were informal and often involved a lot of socialization. Also because the
team members were amateur in software development, they spent a lot of time collaborating and
helping each other in cross-functional problem solving. These challenges may be less significant
in the teams consisting of professional software engineers/developers; however, other challenges
may present, such as recruitment of agile staff, training, motivation, performance evaluation,

35

Accelerating Software Development

communications, adapting agile for distributed teams (different culture, background, language,
time zone, etc.) and large-scale enterprise projects (more complicated technical specs and rapidly
changing requirements).

Conclusion
This paper presents findings from a case study on agile practices in a small-scale, time-intensive
web development project at a college-level IT competition. Based on the observation of the de-
velopment process, the interview of project team members, and the study of relevant documents,
we describe how agile practices, such as daily scrums, backlogs, and sprints, were successfully
applied to the project development. We also describe several supporting activities that the team
employed, including cross leveling of knowledge, socialization, and multiple communication
modes. Finally, we discuss the benefits and challenges of implementing agile practices in the case
project reported. Our study found that agile practices were a success in this case study, which
confirms that agile methodology is suitable for voluntary, self-organized, cross-functional teams
developing small-scale, time-intensive software development projects.

Case studies in software engineering and information systems research often test theories and col-
lect data through observation of a project and other qualitative methods such as interview and
documentation. Each team and project characteristics are unique to each case study; thus com-
parisons and generalizations of case study results are difficult and are subject to questions of ex-
ternal validity (Kitchenham, et al., 2002). The Java Sniper project described in this case study is a
reasonable representative of a class of small-scale, time-intensive software development projects
in computer science or software engineering courses (with similar number of developers, devel-
opers’ background and experience, time, and project scope). However, such group projects can
still differ in terms of size (software requirements, the number of lines of code), design pattern,
type of software developed, language used, etc. It would be interesting to analyze the degree to
which agile practices in projects that differ along these dimensions resemble the findings of this
case study.

References
Agile Software Development. (2011). Wikipedia. Retrieved August 26, 2011, from Wikipedia:

http://en.wikipedia.org/wiki/Agile_software_development

Boehm, B. (2002). Get Ready for Agile Methods, with Care. Journal Computer , 35 (1), 64-69.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K. E., et al.
(2002). Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transactions
on Software Engineering , 28 (8), 721-734.

Nerur, S., & Balijepally, V. (2007, March). Theoretical reflections on agile development methodologies.
Communications of the ACM , 50 (3).

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software
engineering. Journal of Empirical Software Engineering , 14 (2), 131-164.

Schwaber, K., & Beedle, M. (2001). Agile Software Development with Scrum. Prentice Hall.

Yin, R. K. (2002). Case study research, design and methods. Sage Publications.

36

http://en.wikipedia.org/wiki/Agile_software_development

Zhang & Dorn

37

Biographies
Sonya Zhang is an Assistant Professor of Computer Information Sys-
tems at The College of Business Administration at Cal Poly Pomona.
Sonya received a PhD in Information Systems and Technology from
Claremont Graduate University, a Master of Science in Computer Sci-
ence and a Master of Business Administration from Illinois State Uni-
versity. Sonya was an Assistant Professor at Fresno State prior to join-
ing Cal Poly; she also worked as a software engineer in health infor-
matics and higher education. Sonya's research interests focus on social
learning and web intelligence. She has published in leading IS journals

and conferences including Journal of Information Technology Education, Journal of Information
Systems Education, International Journal of E-Learning, HICSS, AMCIS and ACM SIGMIS.

Bradley Dorn is a MBA student at California State University, Fresno
(i.e., Fresno State). Bradley received a Bachelors of Science in Busi-
ness Information Systems (major) and Mathematics (minor) from
Fresno State. Bradley also worked as a teaching associate and student
assistant there. Bradley's primary research interests pertain to Internet
applications, their design and development, and development process.

	Accelerating Software Development through Agile Practices - A Case Study of a Small-scale, Time-intensive Web Development Project at a College-level IT Competition
	Xuesong (Sonya) ZhangCalifornia State Polytechnic University, Pomona, CA, USA
	xszhang@csupomona.edu

	Bradley DornCalifornia State University, Fresno, CA, USA
	bdorn@csufresno.edu

	Executive Summary
	Introduction
	IT Competition Project Case and Rules
	Forming and Structuring Project Team
	Implementing Effective Scrum Practices
	Daily scrum (via Skype)
	Backlogs
	Sprints

	Supporting Activities
	Cross-leveling of knowledge
	Socialization
	Multiple communication modes

	Discussion
	Increased quality of the deliverables
	Better change management
	More efficient workflow
	Increased innovation

	References
	Biographies

