

Volume 16, 2017

Accepted by Editor Lalitha Jonnavithula│Received: March 24, 2016│ Revised: September 21, October 31,
2016; January 4, February 13, 2017 │ Accepted: February 15, 2017.
Cite as: Huynh, M., & Ghimire. P. (2017). Browser app approach: Can it be an answer to the challenges in
cross-platform app development? Journal of Information Technology Education: Innovations in Practice, 16, 47-68. Re-
trieved from http://www.informingscience.org/Publications/3667

(CC BY-NC 4.0) This article is licensed it to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we
encourage you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does
not permit you to use this material for commercial purposes.

BROWSER APP APPROACH: CAN IT BE AN ANSWER TO
THE CHALLENGES IN CROSS-PLATFORM APP

DEVELOPMENT?
Minh Huynh* Southeastern Louisiana University,

Hammond, LA USA
Minh.huynh@selu.edu

Prashant Ghimire Southeastern Louisiana University,
Hammond, LA USA

Prashant.ghimire@selu.edu

*Corresponding Author

ABSTRACT
Aim/Purpose As smartphones proliferate, many different platforms begin to emerge. The

challenge to developers as well as IS educators and students is how to learn the
skills to design and develop apps to run on cross-platforms.

Background For developers, the purpose of this paper is to describe an alternative to the
complex native app development. For IS educators and students, the paper pro-
vides a feasible way to learn and develop fully functional mobile apps without
technical burdens.

Methodology The methods used in the development of browser-based apps is prototyping.
Our proposed approach is browser-based, supports cross-platforms, uses open-
source standards, and takes advantage of “write-once-and-run-anywhere”
(WORA) concept.

Contribution The paper illustrates the application of the browser-based approach to create a
series of browser apps without high learning curve.

Findings The results show the potentials for using browser app approach to teach as well
as to create new apps.

Recommendations
for Practitioners

Our proposed browser app development approach and example would be use-
ful to mobile app developers/IS educators and non-technical students because
the source code as well as documentations in this project are available for down-
loading.

Future Research For further work, we discuss the use of hybrid development framework to en-
hance browser apps.

Keywords browser-based apps, mobile app usage, app development, cross-platform web
app, store-retrieve-display app, WORA, hybrid development framework.

http://www.informingscience.org/Publications/3667
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Browser App Approach

48

INTRODUCTION
According to a recent study by Pew Research Center on Smartphone, nearly two-thirds of Americans
are now smartphone owners. Among the smartphone owners, Millennials (ages 18-34) are by far the
most technologically advanced user group, with a 95% cell phone ownership. Majority of the cell
phones today are smartphones (Smith, 2015). Interestingly, this explosion of smartphones has caused
some incredibly complex challenges for developers as well as Information Systems (IS) educators and
students.

One of such challenges is how to create apps that can run on so many different platforms and devic-
es on the market. Take the app CamScanner Pro for example. To be successful, its developers,
INTSIG Information Co., must develop the same app to run on the following: iOS for iPhone; An-
droid for devices such as HTC Desire, Samsung Galaxy, Motorola Droid Razr; Blackberry OS for
Blackberry line of smartphones; Windows OS for Microsoft and Nokia Windows-based phones. Be-
sides these major operating systems (OS), there are also other OS such as BADA from Samsung,
Palm OS, Open WebOS, Maemo, MeeGo, Ubuntu, etc. Not only the developers of CamScanner face
different OS but they also have to deal with different hardware from competing manufacturers.

What developers are facing are also manifested in what IS educators and students are struggling with,
especially in acquiring and developing skills related to mobile web design and app development. The
challenge is how to learn, understand, and apply something like mobile app development that has a
steep learning curve, has no standard technology, and keeps on changing. This is simply because each
mobile platform works differently due to its unique hardware and OS. As reported in previous works
(Huynh & Ghimire, 2015; Joorabchi, Mesbah, & Kruchten, 2013; Native, web or hybrid mobile-app
development, 2012), such a technical challenge makes teaching mobile apps programming languages
and tools for native apps almost out of reach for non-technical students. For instance, the Java code
written for an Android app has to be converted into the Objective-C code in order to run on an Ap-
ple iOS device. For those IS educators, it has become difficult to teach mobile web design and app
development courses because the learning curve is so steep and the technology is not standardized
and keeps on changing. For IS students, the technical requirements are so broad because there are so
many different platforms and hardware to deal with. Consequently, they are scared away from learn-
ing and understanding about mobile web design and app development.

In this paper, we set out to explore ways to overcome this challenge. Our work is based on the previ-
ously published JITE:IIP article titled “Learning by Doing: How to Develop a Cross-Platform Web
App” by Huynh and Ghimire (2015). Based on their prototype, we advance the project further by
adding more features/functionalities to make the original web app better and more useful and con-
ceptualizing the developing processes into an approach that could provide guidance for IS educators
to teach and IS students to learn about app development. In this paper, we extended the previous
work in three ways. The first is the additional features that we added to enhance the prototype and
turned it into a fully functional app. The second is the redesign of the code so that it could be reused
to create other apps. Finally, most important of all, is to leverage on the experiences learned and
knowledge gained from the previous project to formulate a conceptual foundation for the browser
app approach presented in this paper. Because of this extended work, we are able to propose a pos-
sible approach to the nagging problem of dealing with many different mobile platforms and devices.

Our proposed approach is based on three key premises: (1) viewing web browser as a platform, (2)
relying on open-source technology standard, and (3) applying “Write once and run anywhere” con-
cept to minimize the learning curve. Throughout the paper, we attempt to demonstrate that app de-
velopment does not have to be time-consuming, highly sophisticated, and platform specific. Rather,
we show how we went through the development of a series of mobile browser-based apps in a time-
ly and efficient manner without a steep learning curve. One of our advocative premises is that there
is an alternative approach to the native app development approach. We think that browser-based app
may provide the answer to the cross-platform app challenge. Therefore, we organize our paper as

 Huynh & Ghimire

49

follows. In the first section, we highlight the previous development of the prototype called Student
Services Web App and the on-going progresses. Next, we describe the major enhancements that we
added to this Web App. These experiences lead us to the proposed approach for the design and de-
velopment of mobile browser-based apps or browser apps in short. In the following section, we
describe the proposed approach in action. This section illustrates the process of creating a new
browser app based on the proposed approach. The subsequent section then provides technical details
on how to practically set up an environment to run browser apps and to adopt the code to create
more apps. This is then followed with a discussion section where we make the case for the browser
app approach. Finally, the paper concludes with the highlights of the work, the potential contribu-
tions, limitations, and future development work.

THE CHALLENGE
The explosion of smart devices has created some incredibly complex challenges for developers as
well as to IS educators and students. Since tackling all these challenges is beyond the scope of our
paper, we would like to zero in one specific challenge. That is how to design and develop apps to run
on cross platforms. In the academic context, the focus becomes how to teach advanced web design
for a mobile environment and, specifically, browser app development given many different platforms
and devices.

Let us first take a closer look at this challenge in the context of the following three factors: the com-
plexity when dealing with cross platforms, the effect of large number of native apps, and the fast
pace of technology obsolescence. The discussion of these three factors provides the backdrop for
our proposed approach and our advocacy for browser apps in the later sections.

The first crucial factor is the current existence of large number of different platforms and devices on
the market. Among the major platforms are IOS, Android, Blackberry, and Window Phone. These
platforms run on different devices that are manufactured by different companies. While the availabil-
ity of different platforms and devices offer consumers a variety of choices, they put tremendous
burden on individual app developers or smaller app development shops as well as IS educators teach-
ing mobile app development. Each of these operating systems requires completely different develop-
er tools and development frameworks. Knowledge of one tool and one framework may not neces-
sarily be transferable to another. Furthermore, these tools and their associated developer framework
are constantly updated with new features.

When we explored and experimented with the development of native apps for Android, iOS, and
Windows, we realized how difficult it was to learn the Software Development Kit (SDK) tools and
master each platform specific languages. This experience led us to the choice of going with the open
source software that is more resilient to changes than the proprietary options. Dealing with different
operating systems is just one side of the challenge. The developers of native mobile apps must con-
sider the variety of different hardware. Designing and developing a native app on one specific hard-
ware is already demanding, costly, and time-consuming. Let alone making this specific app to run on
so many different devices built on different proprietary hardware. What works on one device does
not necessarily work on other devices. For instance, there are lower-level APIs that allow native code
to access device storage, sensors, and data (Charland & Leroux, 2011), and all these APIs are differ-
ent from one device to another. Therefore, to develop a native app for different platforms is techni-
cally challenging and economically demanding, especially for smaller shops of developers.

The second factor is the existence of so many mobile apps. According to one estimate, there were
more than two million mobile apps on the market just a few years ago. This number could be even
higher as the number of smartphones sold was projected to reach one billion at the end of 2015
(University of Alabama at Birmingham, 2014). Just from the count at Google Play Store and Apple
App store alone, users have downloaded all the apps billions of times per year (Malavolta, Ruberto,
Soru, & Terragni, 2015). According to the 2014 U.S. Mobile App Report (Lella & Lipsman, 2014), the

Browser App Approach

50

mobile apps usage alone makes up a majority of total digital media engagement at 52%. Based on the
mere number of apps, it seems like a great opportunity for anyone to jump into the market and take
advantage of the large demands. However, a closer look at the number reveals an interesting shadow.
That is, despite so many apps available, only a small percentage of apps are profitable. Furthermore,
the native app market has been dominated mostly by large and established companies. Consequently,
apps from smaller companies and/or from individual would have a hard time to compete and suc-
ceed (Brodsky, 2015). Therefore, we advocate that the focus of teaching in this context should not be
on native app development but instead on mobile web design and web-browser based apps because
of its inherent advantages. Such advantages include the following: browser apps’ searchable nature,
less complex platform to deal with, non-proprietary technology, adaptable to “write once run any-
where” technology. We will elaborate more on these advantages in the subsequent sections.

The last factor is the quick pace of technology obsolescence. The obsolescence affects not only
software but also hardware. Any new upgrade in either software or hardware on those mobile devices
would have direct impact on the apps that run on those devices. In most cases, the apps would also
need to be updated and upgraded. In some case, the changes in OS or hardware render the apps in-
operable or incompatible. To update the code in these apps would require time and knowledge and,
hence, create tremendous burden on the developers. Therefore, it becomes not only expensive but
also difficult to maintain native apps in a cross-platform environment. However, since mobile web
design and web apps are based on browser, the update and grade in the code of these apps could be
done much faster than that in the native apps. Furthermore, the code and the modification could be
done just once and then the apps could run from anywhere. This is one clear advantage of browser
apps.

These three factors pose significant challenges to the developers, IS educators, and students when
learning and working with native app development. However, these challenges open an opportunity
for a fresh look into the advantages and potentials of mobile web design and browser based apps. In
the subsequent sections, we present our proposed teaching approach that focuses on browser apps
rather than native apps. We begin first with the review of previous work and our on-going progress,
and then describe in detail our proposed approach. It is followed with a demonstration of our ap-
proach in action and the description of what we have accomplished.

THE PREVIOUS WORK AND ON-GOING PROGRESS
In the article “Learning by Doing: How to Develop a Cross-Platform Web App”, Huynh and
Ghimire (2015) described their work in the development of the Student Services Web App. This app
is a simple cross platform Web App that provides the information of services available to students at
a university. The article first presented a detailed step-by-step development process. Then, it provided
the illustration of the Student Services Web App: how it works and what features it offers. It also
discussed the code written and the development techniques used in the project. The article ended
with thoughts for further development of cross platform mobile apps. Based on the successful deliv-
ery of a functional prototype as described in Huynh and Ghimire (2015), we have taken steps to ad-
vance the project further. The first advancement that we contribute is to add more features/ func-
tionalities to make the original web app better and more useful. The second and more important ad-
vancement is our conceptualization of the experiences learned and the knowledge gained into an
approach that could help IS educators to teach and IS students to learn the nuts and bolts of browser
based app development without a steep learning curve.

Since the introduction of the first version of Student Services Web App, we have made these follow-
ing enhancements. We added:

• Feature to allow users specify their own content in the database,
• Feature to support flexible number of data fields and different user-defined data types,
• Feature to display map for location and direction,

 Huynh & Ghimire

51

• Functionalities like supporting video and audio and allowing multiple searchable fields,
• A simplified process for data input such as allowing users to input data directly onto the

server,
• Support for international characters/fonts.

These enhancements provide the groundwork for turning the initial Student Services Web App into
the proposed approach for teaching and developing a series of the so-called Storing, Retrieving, and
Displaying (SRD) browser apps. The reason for naming the category of these apps as SRD is that
they are designed specifically to interact with a web database and to perform the three basic functions
of storing information, retrieving, and displaying the requested information. Although these apps are
similar to other typical database web applications, they are distinctive in the way we design and con-
figure them. Our SRD browser apps allow users to define their own content and feed in their own
data without any need for programming. This unique characteristic reflects our contribution in giving
the users the ability to create their own specific apps. In other words, by allowing users to come up
with their own content and use the content to feed the app, this means that the users can now create
and define an app to fit their own specific context or customize their app to meet their own need. By
not fixing the number of data fields and not predefining the data types, we enable users to customize
their own information according to their need without being constrained by our written code.

Other features such as user-defined search fields, location map display, and support of multimedia
and international characters/fonts make the groundwork much more useful and adaptable to use in
different contexts including non-English environment. For instance, users can define the data types
that match with their specific content including multimedia and context sensitive content. The data
types that are currently supported include the following: text, audio, video, image, email, phone, URL,
and map. Another unique feature is the ability for users to define their own search criteria. This fea-
ture allows users to specify more than one key field and, hence, offer them more robust search/query
capability on their content. The support for international characters/fonts allows users to build con-
tent for not just English but any foreign language or multiple languages.

Furthermore, as web browsers on mobile devices mature, the environment becomes much more sta-
ble and uniform. As a result, browser apps can deliver many performances and functionalities similar
to those in native apps. For the case of accessing the database, retrieving, and displaying information
from the database, browser apps are better suited for the task than native apps. As mobile web
browser continues to proliferate, its apps will be more appealing because they can perform more
complex and sophisticated tasks just like native apps but without a steep learning curve.

When we develop our browser-based apps, we choose to stay with the established open standards in
the mobile era. We use HTML5, CSS3, JavaScript, and PHP. Given much enhancements in HMTL5
and recent CSS3, we are able to write code that can run on any browser regardless of the hardware
or OS and can be responsive to any device screen size. We take advantage of the “responsive web”
capabilities enabled by the recent CSS.

To maximize the impact of our coding effort, we apply the concept of “Write once, run anywhere”
(WORA). “Write once, run anywhere” is a slogan created by Sun Microsystems to promote the bene-
fits of the Java Platform. WORA was a good idea, but its practical implementation had been limited
due to the complexity involved in an abstraction layer between the ‘compiled code’ and the operating
system and processor (Daugherty, 2010). Though the original mechanism for Java Platform is not
applicable in a web environment, the idea of WORA is still very powerful. In the context of mobile
browser apps, the implementation of WORA is quite feasible. The emergence of responsive web
capabilities, mobile-specific features in HTML5, CSS3, and availability of devices with larger, higher
resolution screens all have made the mobile Web a reality. That is the wealth of useful information
from the Web is now accessible at any time and in any place through mobile devices. Our simple
SDR apps are suitable to serve as gateway to such a wealth of information on the Web. Almost all
the mobile devices nowadays offer web browsers; therefore, browser apps in general, and our SRD

Browser App Approach

52

apps in particular, provide an ideal implementation of WORA. With WORA, developers as well as IS
educators and students need to just design, write, and develop code once and then run it many times
and adapt it in any context. The process of creating a new web app is as simple as modifying a con-
figuration file. There is no need to rewrite the code as in the case of native apps.

Our proposed SRD apps are the specific type of apps designed to perform these three main func-
tions: Store, Retrieve, and Display (SRD) information from the web-based database. For the scope of
this paper, we focus mainly on this category of SRD browser apps. Such apps have many advantages
and are quite useful despite their simplicity. One, using the web to access information in a database is
an easy and timely way to disseminate information to wider audience. Two, web browser software is
much easier to use than any proprietary query tools. Three, the web interface requires few or no
changes to the database. Four, being able to retrieve and display information on a mobile device adds
value to the information because users have a convenient way to search and find what are relevant
and timely to them in any place and at any time. As described earlier, our SRD browser apps are
unique in that we design our code to allow users to define their own content, set their own search
criteria, and include any available data type to fit their own context. This is how we enable users to
create their own browser apps without the need to deal with the underlying code as demonstrated in
the next section.

The combination of the above elements enables us to achieve our desire in making the code easy to
use in many different contexts and by many different users. We strive to make the code easy for users
to adopt and to use our code to create new apps. When we modified the design and rebuilt the code,
we put much effort in making them simple so that potential adopters of our code do not have to be
programmers to understand and use it. This is the reason why we implemented configuration files as
shown in the appendix where custom setting could be made. For instance, to create a new app from
an existing app, all we needed to do was to create a database with new content, provide the database
connection parameters, and edit the heading, footer and images, and modify the configuration file.
The new app that stores, retrieves, and displays new content is ready to run without any major modi-
fication of the code.

OUR PROPOSED APPROACH IN ACTION
This section illustrates how we used the proposed approach to create a SRD browser app from the
existing app. Specifically, our focus is on the step-by-step demonstration of how we took the code
from the Student Service App to create a new SRD browser app. The result shows that by adopting
our existing app, one can learn about the mobile app and even create a series of browser-based apps
without a steep learning curve. After that, we provide the basic instruction for potential users who
want to adopt and deploy our code. The instruction covers the setup of an environment and the
process to download code and configure it. The final part in this section offers conceptual details in
the design of our code. This would be useful to those who are interested in learning more about the
technical aspects in the design of our SRD browser app. We also included more technical explana-
tions on the code for reference in the appendix of the paper.

USING AN EXISTING BROWSER APP TO CREATE ANOTHER NEW APP
The purpose of the illustration is two-folded. One is to review how the Student Services Web App
works and the other is to explain what we did to create another new app. The entire process does not
require a steep learning curve as in the case of native app.

Let us first recap how the Student Services App works. The operation of the Student Service Web
App can be summarized in three steps. The first step is to search by the key field Service/Office. The
user also has an option to select other search fields such as Building or Email. The second step is to
type in characters or words in the search box. A list of matching records is displayed accordingly. The
last step is to select the desired record. The user can choose the desired record by clicking on it. The

 Huynh & Ghimire

53

app then displays the detailed information requested by the user. Figure 1 shows the interface and
functions of Student Services Web App.

Figure 1. Interface and functions of student services web app

Next, let us describe in detail the process involved in the creation of a new browser app based on the
code and the logic design in the Student Services Web App. The new browser app that we presented
in this illustration is called the Academic Major Web App. The purpose of this particular app is to
provide basic and relevant information to students interested in a certain academic major offered at
any typical university. Basically, when users run the app, they can search by the degrees offered and by
the Colleges where the degrees are offered.

In responding to the users’ search, the app would retrieve and deliver the basic contact information
on where and what academic majors are offered at a university. For instance, if one were interested in
accounting, the app would provide the college, the location, the phone number, the email, and the
web site for details relevant to accounting.

Below is the step-by-step description of how we created the Academic Major Web App using our
proposed approach.

The first step is to capture the needed data. In this case, it was academic major data. We gathered all
the data related to the degrees offered at our university. We stored the data in a Microsoft Excel file
as shown in Figure 2. In this Excel file, we did include the heading row along with rows of relevant
data.

Figure 2. Defining rows and columns for the data to be imported

After we finished capturing the data and stored them in an Excel file, the next step was to transfer
the data onto the server. The details of the software and hardware needed for the server are de-

Browser App Approach

54

scribed in the subsequent section “Instruction for Adopting and Deploying our Code in Other Con-
texts”. At this point, we assumed that the server environment was already set up and ready for use.

Here, we describe the actual process for the transfer of information from the Excel spreadsheet to
an online MySQL database. From our experience, the best format for importing Excel data onto
MySQL is to save the data in Excel as OpenDocument. This is done by using “save as type” in Excel
to save the data in OpenDocument spreadsheet format. The reason for using OpenDocument is that
MySQL can read and import OpenDocument spreadsheet more efficiently and accurately, especially
when the data contains foreign fonts or special characters.

On the server side, we logged on our Ubuntu server and accessed MySQL via the program called
PhpMyAdmin. We ran PhpMyAdmin from a web browser using this url:
http://localhost/phpmyadmin. In PhpMyAdmin, we used the function “Import” to read the data
from the OpenDocument spreadsheet and save them into a table in MySQL database on an Ubuntu
server as shown in Figure 3.

Figure 3. Using PHPMyAdmin to import data from the OpenDocument spreadsheet

to create a table in MySQL database

In our case, after we imported the data and saved them in the table called “Academic Majors”, we
could view the content by clicking “Structure” on the menu. Figure 4 shows an example of what
rows and columns in our “Academic Majors” table look like. The first and second rows are unique in
our design because they are set up to define the content and the search capability in the app.

Figure 4 shows the first row contained the field names such as Colleges, Degrees, Building, etc.
These are the headings in our Excel file. The second row contains the data types such as search_text,
search_name, text, phone, email, url. We prepended the word “search” in front of the data type to
designate the field to be a searchable field. For instance, “Colleges” with the data type “search_text”
has text as data type and could be searched. “Degree” and “Building” are two other searchable fields.
When running the Student Services Web App, all the fields designated with “search_” are displayed
as searchable fields as shown in Figure 5. The rest of the rows are just instance of actual rec-
ords/data.

http://localhost/phpmyadmin

 Huynh & Ghimire

55

Figure 4. The content of data in Academic_Majors table after the import step

Figure 5. An example of “Search by” searchable fields

The next step was to take all the code from Student Services Web App and modify them to work
with the new browser app. As we stated earlier, our design’s goal is to make the process easy even to
the non-programmer. Although we copied the entire codes of Student Services Web App, to make a
new app, all we need to do is to modify the config.php file as described next.

Figure 6. Portion of the actual code in the Config.php where customized parameters are set

After copying all the existing code, we edited the config.php in core folder. We provided the server,
username, password, database, and table name that were associated with Academic Major App. These

Browser App Approach

56

are the necessary parameters used by other php files to establish connection to the designated data-
base. In the config.php file, there are also other variables such as $topbar_text, $topbar_image,
$footer_text, $footer_image. These variables provide users options to add customized header and
footer. Figure 6 shows part of the actual codes in the config.php. All these parameters are what us-
ers need to specify so that all the codes point to the right database, access the specified information,
and display user-customized logo, images, header and footer.

After editing the config.php and including the appropriate parameters, we finished the process. We
had successfully create a new SRD browser app and named it Academic_Majors. When running the
code, this new app would appear as shown in Figure 7.

Figure 7. Our Web app interface after customization

As demonstrated in the example above, the code for Student Services Web App was untouched in
the process of creating a new app. The only things that we needed to change were the parameters in
the config.php file. The way that we designed and wrote our code is to make it as easy to adopt as
possible. Even a non-programmer can pick up the code, adopt it, and use it to create different apps.
All this is possible because of our design in using a configuration file which is separated from the
actual code.

Another important point that we want to emphasize is the cross-platform nature in our browser app.
We used HTML, PHP, JavaScript so that the only thing required to run is a web browser regardless
of various operating systems and different hardware devices. Whether the device is an Android
smartphone or an iPhone, the browser app will run from the browser. There is no need to change
the underlying code. It is much simpler than in the case of native apps where code that was written
for Android devices would have to be rewritten for iPhone environment.

 Huynh & Ghimire

57

When we enhanced the Student Services Web App by integrating different elements in our proposed
approach, we came up with code that is quite robust and adaptable. As illustrated above, it does not
take much work to create other database-driven browser apps given the existing code. In fact, we
have created two additional apps for the communities outside of the university. Other apps currently
under planned development include student organizations app and local business directory app.

INSTRUCTION FOR ADOPTING AND DEPLOYING OUR CODE IN OTHER CONTEXTS
In order to share our code and our browser app, we provide a brief instruction here for those who
are interested in our browser app and want to use it on their own server environment. Here are the
basic software and hardware recommended.

Basic software and hardware include:

• A server computer. We used Dell PowerEdge server.
• Ubuntu server operating system. We used the server OS version 14.04 (or the later) 64 bit.
• MySQL. We used version 5.5.46.
• PHP. We used version 5.5.9.
• Apache. We used version 2.4.7 (Ubuntu).
• PHPMyAdmin utility. We used version 4.0.10.

The above requirement is based on the available resources at our own site. It is possible to have dif-
ferent setup. For instance, instead of using an actual server computer, a virtual server running Ubutu
on a cloud hosting service site is a possible alternative. We have tried this setup on DigitalOcean
(https://www.digitalocean.com/). DigitalOcean offers a cloud computing environment designed for
developers and enterprises. This environment is relative easy to set up and less expensive to pursue.

Since the description of how to set up the server environment is beyond the scope of this paper, we
will not discuss the details of the installation here. Instead, we offer the URL below. This URL gives
an excellent resource where specific and detailed instruction to install Ubuntu server version 14.04 is
available. This URL is http://www.tecmint.com/ubuntu-14-04-server-installation-guide-and-lamp-
setup/
Once the environment is set up, then the code for our existing browser App could be downloaded
and installed in a folder on the Web server. For instance, on our server, we created a folder WEB-
APP/Academic_Majors/ and copied all the codes including the folders here. After that, the users
could follow the steps illustrated above to create a new browser app. Here is the summary of those
steps necessary in the process of creating a SRD browser App.

• First, set up your server environment.
• Next, download the SRD browser app code available at GitHub.
• Then, set up your database with the data in your context

o First, identify the need for a database driven app
o Next, collect the relevant data and store the data in a spreadsheet
o Then, import the data into the online database such as MySQL
o Configure the first two rows as the field names and as data types associated with

each field name.
• Finally, configure the codes

o Copy the codes into the appropriate folder on your server
o Modify the configuration file with appropriate parameters.
o Run the app with the URL.

https://www.digitalocean.com/
http://www.tecmint.com/ubuntu-14-04-server-installation-guide-and-lamp-setup/
http://www.tecmint.com/ubuntu-14-04-server-installation-guide-and-lamp-setup/

Browser App Approach

58

CONCEPTUAL VIEW OF THE DESIGN OF OUR SRD BROWSER APP CODE
The conceptual view of all the code based on our proposed approach could be visualized in Figure 8.
Basically, there are three categories of code written for our SRD browser app. They are Back-end
files, View files, and Helper files. Figure 8 shows the relation, dependency, and flow sequence among
these files.

Figure 8. Design logic and flow of the SRD Web App codes

Config.php and Connection.php are designated as the Back-end files. Their main function is for
use in the configuration of a custom browser-based app. All the configuration parameters, such as
app name, header text/image, footer text as well as the database access credentials, are specified in
config.php file. The actual code for connecting and accessing the database are written in connec-
tion.php file. In addition, the connection.php file also extracts raw data from the database and
formats them accordingly by using different files such as home.php, info.php and map.php. Figure
8 shows Back-end files inside the dotted box at the top.

As shown in Figure 8, the View files are inside dotted box below the Back-end files. They include
home.php, info.php, and map.php files. Their main function is to display information retrieved
from the database when users run the app and make a search. In a typical sequence, users would land
on home.php when they initially open the app. When a particular item is selected from the search
result list, the code in info.php runs and displays the results associated with the search for the par-
ticular item. If the item has geo-location information, the information would be displayed using the

 Huynh & Ghimire

59

code in map.php file. As shown in Figure 8, each one of the View files use connection.php file to
access the information from the database.

Not shown in Figure 8 are the Helper files. These files include home-content.php, header.php,
footer.php and topbar.php. Their main function is to allow customized format for the content in
the home page and top bar as well as the appearance of the header and footer. For instance, specific
colors and logo as well as specific name would be defined in these files. In addition, there are
utils.php and Helpers.php files. Utils.php contains some helper functions for matching and pars-
ing strings such as URLurl and Helpers.php defines function that could be reused in different parts
of the application in order to cleanse and validate raw data.

Figure 9 provides the basic file and folder structure in the code of a typical SRD browser app.

Figure 9. Basic file and folder structure in the code of a SRD browser app

For those who are interested in adopting the codes and creating custom SRD browser apps or using
the code to teach an IS or web-app programming course, we provide additional detailed explanations
in the appendix. There, we include illustrations of code along with documentation to help users un-
derstand much deeper the design of our code.

DISCUSSION
As stated in the Introduction, the rapid growth of smart device usage has led to some complex chal-
lenges to developers as well as IS educators and students. One of such challenges is to how to learn
and teach the design and development of apps to run across different platforms. Each platform
works differently due to its unique combination of hardware and OS. As a result, mobile apps pro-
gramming languages and tools for developing native mobile apps are platform-specific. Practically,
code written for one mobile platform cannot be used on another platform. This means, for instance,
the Java code written for an Android app must be rewritten in Objective-C code in order to run on
an Apple iOS device. This is one of the major reasons why learning and teaching the development
and maintenance of native apps for multiple platforms has been one of the major technical challeng-
es facing not just the mobile development community but also the IS educators and students (Huynh

Browser App Approach

60

& Ghimire, 2015; Joorabchi, Mesbah, & Kruchten, 2013; Native, web or hybrid mobile-app devel-
opment, 2012).

In this paper, we advocate that instead of viewing different OS and devices as platforms for apps, we
propose to view and use web browser as a base platform. As described earlier, there are many good
reasons for viewing and using a web browser as a platform. With a web browser as a platform, we
can push for the development of browser apps rather than native apps. Out of millions of native
apps on Google Play and Apple Store, only a small percentage of apps are profitable. The opportuni-
ties for small app developers are squeezed to the vanishing point while the cost and the entry barrier
are getting higher. On the other hand, browser apps offer many significant advantages (Brodsky,
2015). They give small companies a chance to be visible. There are now “responsive” Web techniques
that automatically adjust to the device’s display capabilities. Browser apps are searchable and can be
accessed just by clicking on a link. Browser apps are easier to develop and update. Separate versions
are not required for different devices. With new capabilities from HTML5 and CSS3, the perfor-
mance gap between browser-based apps and standalone native apps is getting narrower. Successful
mobile web apps can do more than merely replicate a normal Website. Responsive Web techniques
along with devices having higher resolution screens will make browser-apps more useful and mobile
friendly (Brodsky, 2015).

More importantly, the widely availability of web browsers on any mobile device make web browsers
an ideal environment for WORA. Together with using web browser as a platform and applying open-
source standard technology, it is now practical and feasible to write code once and run it anywhere
on any different devices without the technical barriers as in the case of native apps. WORA technol-
ogy/methodology is the best way to fend off the problem of platform proliferation and quick tech-
nology obsolescence (Banerjee, 2011; Daugherty, 2010). It will also reduce the cost incurred in the
design and development of apps because code can be reused very efficiently. It is a very efficient reli-
able approach as we demonstrated in our process of creating a new browser app from an existing
app. From our experience, we discover that the category of apps best suited to our proposed ap-
proach is the SRD type of browser apps. A simple set of code in the existing browser app can be
reused with many different contents. All of these are the reasons and motivations for us to advocate
for the teaching and development of an approach that focuses on browser apps as an alternative to
the complex and highly technical requirements in native apps.

CONCLUSION
Smartphones are widely used for navigating numerous important life activities ranging from search-
ing for health information, using educational resources, finding jobs, reading news, sharing contents
with others, following the driving direction, performing tasks, to staying connected to the world, and
many other usages. For many users, these devices serve as a key entry point to the online world
(Smith, 2015). Yet, the explosive growth in the use of mobile devices has led to the proliferation of
platforms, the creation of millions of apps, and the rapid pace of technology obsolescence. Amid an
environment of constant changes, IS educators and students, like developers, are facing some of the
incredibly complex barriers not only in keeping up with the technology but also in learning and de-
veloping skills to contribute to the tremendous potential in mobile computing.

Throughout the paper, we offer a possible answer to this challenge by sharing our own experience
and success in designing, developing, and creating a series of SRD browser apps. We describe in de-
tail our proposed approach to guide the development of those browser apps. In sum, we first fol-
lowed Huynh and Ghimire’s (2015) work on how to develop a cross platform Web App in general.
Next, we focused specifically on the available code in the Student Services Web App and enhanced it
by adding more features. More importantly, we redesigned the code so that it can be easily used in
other contexts. The result leads us to the creation of a series of fully functional Store, Retrieve, and
Display (SRD) browser apps in a short time and without a significant learning curve. In the Discus-
sion section, we have made the case for pushing forward with browser apps because there are many

 Huynh & Ghimire

61

inherent advantages in the approach that we proposed. At the core of our approach are these three
principles:

1. Coding once and using the codes in many different contexts—the concept of “Write Once,
and Run anywhere” (WORA),

2. Making the code easy to adopt and use by others—the spirit of sharing and contributing to
user community,

3. Building browser-based apps from HTML5, CSS3, JavaScript, and PHP—the embrace of
common platform and open-source standard and viewing and using web browser as a plat-
form for the app development rather than various OS or specific device.

We have demonstrated how our coding and app development were guided by these three principles
above. We illustrated in detail how to use the code in one app and turn it into a different app for use
in a different context without much complexity. We explained the code so that other users can under-
stand the inner work of the code and further develop it to build more apps. The process of adopting
and using the code is quite straightforward. The case in point is that a simple modification of param-
eters in the configuration file is all that it takes to create a new browser app. We advocated the use of
open source technologies such as HTML5, CSS3, PHP, and JavaScript rather than relying on the na-
tive app approach. HTM5L, CSS3, PHP, and JavaScript are commonly used languages and they have
a strong community of developers and users.

This work offers a refreshing look into the merit of mobile web design and browser-based app de-
velopment. It highlights the potentials in teaching and using our proposed approach though simple
but powerful. The evidence rests in the successful creation of a series of browser-based apps in a
short time and without a steep learning curve. Given that the code was already written and available,
users can easily create a series of other “Store, Retrieve, and Display” types of browser-based apps.
Each of the browser apps can be configured specifically to work with the user’s defined content
stored in an online database. Therefore, we hope that our proposed browser app development ap-
proach and example will be useful to those who are interested in the app development and to those
who teach mobile web design or mobile app development courses. We share the source code as well
as documentations in this project so developers/IS educators and students can download, experi-
ment, adopt, and adapt. Any typical users including non-programmers can also take the code, install,
configure, and run it with minimal modifications. Moreover, we invite more participation from a
community that involves in searching, exploring, and experimenting alternative approaches to that of
native apps to push for mobile web computing. Finally, we hope that the merit of our proposed
browser-based approach may help to inspire other similar efforts to overcome the complexity en-
countered in the development, deployment, and management of cross platform mobile friendly apps
and to contribute to shape the direction in the future mobile app development.

LIMITATIONS AND FUTURE WORK
As discussed in the earlier section, using the code and applying the browser app approach enable us
develop a series of SRD apps quickly and efficiently. We showed that our approach does not require
a steep learning curve and extensive technical background. This is beneficial in the context of teach-
ing and learning about mobile app development. However, we acknowledged that we did not address
the issue of usability at all in this paper. This is perhaps one of the major limitations in the paper.
The usability testing should be integrated into the cycle of app development. We recognize our biases
when viewing and using our own apps. Although we think that they are useful and the interfaces are
easy to use, such perceptions can only be verified through usability testing. Therefore, it is important
to take into account the usability factor. We should have observed how users use the apps in a real-
world context and obtained feedback from them for enhancements. By including the evaluation from
a user perspective, future study will help to show whether our proposed approach is practically useful
and our apps are fully functional and adaptable in different contexts. The evaluation of these apps
and the users’ feedback on our proposed approach would offer valuable insights for making the code

Browser App Approach

62

as well as the approach more comprehensible for adoption by IS educators and more refined for use
by students.

With the proposed approach, we are able to produce a series of browser apps for any content and
for cross platforms. From the technical perspective, though these browser apps could work on any
mobile devices, essentially they are still not yet true mobile apps. They are not downloadable. The
characteristics of browser apps is that they are accessed from the Web and run mainly from the
browser. Hence, they cannot function without a connection to the internet. Recently, we have ex-
plored cross platform SDKs such as Xamarin to turn our browser-based apps into true mobile apps.
Xamarin allows developers to build cross platform mobile apps for Android, iOS and Windows using
the same C# codebase. Xamarin code could be compiled into native platform codes. After some ex-
perience with it, we realized that Xamarin is still not yet a stable platform for our application needs.
Many times, just like the native SDKs, Xamarin codes were not backward compatible when there
were new SDK version updates. Recognizing this trend, we plan to pursue the future work in devel-
oping the SRD web apps into hybrid mobile apps.

Hybrid mobile apps allow developers to use standardized web technologies such as HTML5, CSS3,
and JavaScript. This is the same standard used in our proposed SRD framework. However, in hybrid
mobile apps, the developers also include the capability to deliver all service requests to the Platform
API. This part requires the use of a hybrid development framework (e.g., Apache Cordova, ionic
framework, etc.) to provide a native wrapper for containing the web-based code, and a generic JavaS-
cript API to bridge all the service requests from the web-based code to the corresponding platform
API. It is the native wrapper that enables hybrid mobile apps to be packaged, deployed, and distrib-
uted across platform (Irvine & Maddocks., 2013; Malavolta et al., 2015; Wargo, 2012). Among the
benefits with the hybrid mobile apps are cross-platform portability, the reuse of existing knowledge
of web developers, simpler and less expensive and less time consuming development processes. In
sum, they allow developers to create a single mobile app using web standards, and to consistently
distribute it across multiple mobile platforms with (minimal to) no changes (Malavolta et al., 2015).
Therefore, hybrid mobile app approach might offer us a mechanism to turn our SRD browser-based
apps into mobile apps that could be compiled into binary executable files, could be downloaded from
App stores onto users’ devices, and could be run both online and offline. This is what we plan to do
in the next phase of our development.

REFERENCES
Banerjee, U. (2011, December 6). Write Once Run Anywhere (WORA) or cross platform mobile development tools – A

comparison. Retrieved September 18, 2016 from https://setandbma.wordpress.com/2011/12/06/wora-
platform-comparison

Brodsky, I. (2015, December 21). Deathmatch: The mobile Web vs. mobile apps. Computerworld. Retrieved Sep-
tember 18, 2016 from http://www.computerworld.com/article/3016736/mobile-wireless/the-mobile-
web-vs-mobile-app-death-match.html

Charland, A., & Leroux, B. (2011). Mobile application development: Web vs. native. Communications of the ACM,
54(5), 49-53.

Daugherty, E. (2010, February 17). Does Write Once Run Anywhere work? Retrieved September 18, 2016 from
https://dzone.com/articles/does-write-once-run-anwhere

Huynh, M. & Ghimire, P. (2015). Learning by doing: How to develop a cross-platform web app. Journal of In-
formation Technology Education: Innovations in Practice, 14, 145-169. Retrieved February 19, 2015 from
http://www.jite.org/documents/Vol14/JITEv14IIPp145-169Huynh1842.pdf

Irvine, M., & Maddocks, J. (2013). Enabling mobile apps with IBM worklight application center. IBM Redbooks.

Joorabchi, M., Mesbah, A., & Kruchten, P. (2013). Real challenges in mobile app development. In Empirical
Software Engineering and Measurement, 2013 ACM/IEEE International Symposium on (pp. 15–24).

https://setandbma.wordpress.com/2011/12/06/wora-platform-comparison
https://setandbma.wordpress.com/2011/12/06/wora-platform-comparison
http://www.computerworld.com/article/3016736/mobile-wireless/the-mobile-web-vs-mobile-app-death-match.html
http://www.computerworld.com/article/3016736/mobile-wireless/the-mobile-web-vs-mobile-app-death-match.html
https://dzone.com/articles/does-write-once-run-anwhere
http://www.jite.org/documents/Vol14/JITEv14IIPp145-169Huynh1842.pdf

 Huynh & Ghimire

63

Lella, A., & Lipsman, A. (2014). The U.S. mobile app report, 2014. comsCore [white paper]. Retrieved November
18, 2015 from https://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-
Mobile-App-Report

Malavolta, I., Ruberto, S., Soru, T., & Terragni, V. (2015). End users' perception of hybrid mobile apps in the
Google play store. Proceedings of the 4th International Conference on Mobile Services : IEEE. Retrieved November
18, 2015 from http://www.ivanomalavolta.com/files/papers/MS_2015.pdf

Native, web or hybrid mobile-app development. (2012, April). IBM Corporation. [White paper] Document Number:
WSW14182USEN.

Smith, A. (2015, April 1). U.S. smartphone use in 2015. PewResearch Center Report on Internet, Science & Tech. Re-
trieved October 1, 2015 from http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

University of Alabama at Birmingham. (2014). The future of mobile application. Online Masters in Management
Information Systems. Retrieved November 18, 2015 from
http://businessdegrees.uab.edu/resources/infographic/the-future-of-mobile-application

Wargo, J. (2012) PhoneGap Essentials: Building cross-platform mobile apps. Addison-Wesley.

APPENDIX

TECHNICAL EXPLANATIONS ON CODES WRITTEN AND DESIGN LOGIC IN THE SRD
WEB APP FRAMEWORK
For those who are interested in adopting the codes and creating custom SRD web app or using the
codes to teach an IS or web-app programming course, this section will be helpful and relevant. Since
we use GitHub repository hosting service to store the SRD Web App codes, users can easily obtain
the source codes as well as the documentations at this URL: https://github.com/mqhuynh/Mobile-
CMS

In this section, we focus on explaining the design logic as well as selected parts of the codes that may
not be obvious to users. As we described, we included the actual codes so it will be easier for users to
follow.

When the SRD Web App first run, the file index.php is invoked. The main purpose of this file is to
determine the type of device that users are using. It detects whether users are running the App from
either a mobile device or a computer. If the device is a mobile device, then home.php is loaded. Oth-
erwise, phone.php is loaded. This is achieved by the codes shown in Figure A1, in particular the func-
tion isMobile.any(). Phone.php is basically our way of providing users on a computer an emulated
mobile view of home.php to have the look and feel of the app on a mobile device even though the
App itself is run on a computer browser.

Figure A1. isMobile.any() function - code snippet from index.php

Home.php/phone.php loads connection.php, header.php, topbar.php, home-content.php and foot-
er.php as shown in Figure A2. These files are used to establish connection to the database. In addi-
tion, they also load the external CSS and JS libraries, the top heading bar of the app and display the

https://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
http://www.ivanomalavolta.com/files/papers/MS_2015.pdf
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://businessdegrees.uab.edu/resources/infographic/the-future-of-mobile-application
https://github.com/mqhuynh/Mobile-CMS
https://github.com/mqhuynh/Mobile-CMS

Browser App Approach

64

content in the app home page as well as the footer of the App respectively. Home.php/phone.php
uses all these resources to display the homepage of the application.

Figure A2. Code snippet from home.php/phone.php

On searching and selecting different services, info.php file is opened to show the information corre-
sponding to that particular service. Info.php file also uses connection.php, header.php, topbar.php
and footer.php as shown in Figure A3 for the same purpose as of home.php/phone.php. This file
loops through each fields of selected item from the searchbox in home.php. The data is then dis-
played in an understandable form according to their different data types. For instance, a field with
datatype as image will display image instead of image link using HTML img tag as shown in Figure
A3.

Figure A3. Code snippet from info.php

Map.php displays the location of an “address” datatype using Google Maps API. When an address is
clicked in info.php, the corresponding latitude and longitude of the address is ascertained using the
API and the map is displayed. The codes that accomplish the tasks of getting the location and dis-
playing the map is shown in Figure A4.

Config.php allows users to configure database connection parameters as well as different custom
content in the App such as homepage appearance, footer text and top bar image (Figure A5).

 Huynh & Ghimire

65

Figure A4. Code snippet from map.php

Figure A5. Code snippet from config.php

Browser App Approach

66

Connection.php establishes connection to the MySQL server using the configuration set in con-
fig.php file. The data extracted from the database are stored in different arrays to use in different part
of the application.

Figure A6. Code snippet from connection.php

Home-content.php contains content that goes in the homepage of the application. It is embedded
inside home.php.

Figure A7. Code snippet from home-content.php

Helpers.php defines function that can be reused in different parts of the application in order to
cleanse and validate raw data.

 Huynh & Ghimire

67

Figure A8. Code snippet from helpers.php

Browser App Approach

68

BIOGRAPHIES
Minh Q. Huynh is an Associate Professor at Southeastern Louisiana
University. He received his Ph.D. from State University of New York at
Binghamton, and his B.S. in Computer Sciences from University of Mary-
land University College. His teaching interests are in the areas of Digital
Marketing, Web design, Introduction to MIS. Research interests include
software development using open source, web database implementation,
web apps, technology supported distance education, IT for small busi-
nesses. His publications appear in journals such as the Journal of Infor-
mation Technology Education: Innovations in Practice (JITE:IIP), the
Communications of ACM, Journal of AIS, Communications of AIS, Eu-

ropean Journal of IS, Journal of Electronic Commerce in Organizations, Journal of Information
Systems Education, Business Studies Journal.

Prashant Ghimire completed his Bachelor degree in Computer Science
from Southeastern Louisiana University. He is passionate about modern
JavaScript technologies, mobile application development and UI/UX de-
sign. He has worked with many popular web development technologies
such as AngularJS, Ionic, Loopback, jQuery, Bootstrap, ASP.NET,
Laravel, CakePHP, MySQL, MongoDB, etc. Prashant has also been in-
volved in research project on web application development and cloud
computing. His work on “Linking QR code to service learning” was fea-
tured at the IARSLCE-Research poster session. His research on QR

Code/Barcode processor was published on Business Studies Journal. He also presented this research
at the 6th Annual General Business Conference at Sam Houston State University. He is currently
working as a Software Engineer at Leviton Security & Home Automations.

	Browser App Approach: Can It Be an Answer to the Challenges in Cross-Platform App Development?
	Abstract
	Introduction
	The Challenge
	The Previous Work and On-Going Progress
	Our Proposed Approach in Action
	Using an Existing Browser App to Create Another New App
	Instruction for Adopting and Deploying our Code in Other Contexts
	Conceptual View of the Design of our SRD Browser App Code

	Discussion
	Conclusion
	Limitations and Future Work

	References
	Appendix
	Technical Explanations on Codes Written and Design Logic in the SRD Web App Framework

	Biographies

