

Volume 17, 2018

Accepted by Editor Athanassios Jimoyiannis│ Received: March 16, 2018│ Revised: May 8, May 19, 2018 │
Accepted: May 22, 2018.
Cite as: Vicente, A. J., Tan, T. A., & Yu, A. R. (2018). Collaborative approach in software engineering edu-
cation: An interdisciplinary case. Journal of Information Technology Education: Innovations in Practice, 17, 127-152.
https://doi.org/10.28945/4062

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

COLLABORATIVE APPROACH IN SOFTWARE
ENGINEERING EDUCATION:

AN INTERDISCIPLINARY CASE

*Corresponding Author

ABSTRACT
Aim/Purpose This study was aimed at enhancing students’ learning of software engineering

methods. A collaboration between the Computer Science, Business Management,
and Product Design programs was formed to work on actual projects with real
clients. This interdisciplinary form of collaboration simulates the realities of a
diverse Software Engineering team.

Background A collaborative approach implemented through projects has been the established
pedagogy for introducing the Software Engineering course to undergraduate
Computer Science students. The collaboration, however, is limited to collabora-
tion among Computer Science students and their clients. This case study ex-
plored an enhancement to the collaborative approach to project development by
integrating other related disciplines into the project development framework;
hence, the Interdisciplinary Approach.

Methodology This study adopted the case method approach. An interdisciplinary service inno-
vation activity was proposed to invite other disciplines in the learning process of
the computer science students. The agile methodology Scrum was used as the
software development approach during project development. Survey data were
collected from the students to establish (a) their perception of the interdiscipli-
nary approach to project development; (b) the factors that influenced success or

Aileen Joan Vicente* College of Science,
University of the Philippines Cebu,
Cebu City, Philippines

aovicente@up.edu.ph

Tiffany Adelaine Tan School of Management,
University of the Philippines Cebu,
Cebu City, Philippines

tgtan@up.edu.ph

Alvin Ray Yu College of Science,
University of the Philippines Cebu,
Cebu City, Philippines

aoyu3@up.edu.ph

https://doi.org/10.28945/4062
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:aovicente@up.edu.ph
mailto:tgtan@up.edu.ph
mailto:aoyu3@up.edu.ph

Collaborative Approach in Software Engineering Education

128

failure of their team to deliver the project; and (c) the perceived skills or
knowledge that they acquired from the interdisciplinary approach. Analysis of
data followed a mixed method approach.

Contribution The study improved the current pedagogy for Software Engineering education
by integrating other related disciplines into the software project development
framework.

Findings Data collected showed that the students generally accepted the interdisciplinary
approach to project development. Factors such as project relevance, teamwork,
time and schedule, and administration support, among others, affect team per-
formance towards project completion. In the case of the Computer Science stu-
dents, results show that students have learned skills during the experience that, as
literature reveal, can only be acquired or mastered in their future profession as
software engineers.

Recommendations
for Practitioners

The active collaboration of the industry with the University and the involvement
of the other related courses in teaching software engineering methods are critical
to the development of the students, not only in learning the methodology but
also as a working professional.

Recommendation
for Researchers

It is interesting to know and eventually understand the interactions between in-
terdisciplinary team members in the conduct of Software Engineering practices
while working on their projects. More specifically, what creative tensions arise
and how do the interdisciplinary teams handle the discourse?

Impact on Society This study bridges the gap between how Software Engineering is taught in the
university and how Software Engineering teams work in real life.

Future Research Future research is targeted at refining and elaborating the elements of the inter-
disciplinary framework presented in this paper towards an integrated course
module for Software Engineering education.

Keywords software engineering education, interdisciplinary learning, collaborative approach

INTRODUCTION
Software Engineering is one of the most practical courses in Computer Science and Engineering.
The prescribed course implementation will always require the development of software alongside the
introduction of Software Engineering methodologies, techniques, and tools in lecture classes. This
study explored a case of a collaborative approach to software project development in an interdisci-
plinary environment.

Many Software Engineering Education case studies focus on collaboration among Computer Science
or Software Engineering students (Giraldo, Collazos, Ochoa, Zapata, & de Clunie, 2010; Kirti, Sure-
ka, & Varma, 2015) or collaboration between Computer Science students and real clients (Chase,
Oakes, & Ramsey, 2007; Chen & Chong, 2011; Flener, 2006). These case studies agree that students
get the maximum appreciation and learning of Software Engineering methods and techniques when
applied to real-world projects. These studies also show that students learn from their peers and from
real-world challenges in a collaborative environment. For these studies however, the collaboration is
limited to peers with the same educational background. The notion of learning in Software Engi-
neering from other disciplines is rarely studied. Beard (2014) argued that sharing knowledge between
Software Engineering and other disciplines can help improve Software Engineering practices. There-
fore, the inclusion of non-Computer Science students, with different but related course requirements,
to the project teams makes this case an interesting study.

Vicente, Tan, & Yu

129

This interesting case of interdisciplinary environment exists in software development teams today as
well. As software engineering practices become agiler, software engineers need to shift from software
orientation to a more user-centric paradigm. Thus, there is a need for software engineers to become
more people oriented. An increased collaboration between stakeholders and development team is
necessary. Because software engineers tend to be “abysmal with people” (Capretz, 2003), organiza-
tions create diverse teams composed of both engineering and non-engineering professionals
(Cooper, n.d.). Interestingly, this industry environment is not simulated in the project development
experience of our students. In order to bridge the gap, this study enhanced the collaborative ap-
proach to Software Engineering education by inviting other disciplines to work with Computer Sci-
ence students in the development of a software project.

This paper presents this interdisciplinary case and is organized as follows. The paper begins with the
presentation of the key pedagogies applied in this study, that is, the Collaborative and Interdiscipli-
nary approaches. From this, the study’s proposition is presented using a framework for an interdisci-
plinary approach to software project development. The research methodology used is detailed includ-
ing the presentation of this research’s case context. The results and discussions sections present the
findings from the data collected and their subsequent interpretations. Finally, the paper concludes by
synthesizing the results vis-à-vis the theoretical underpinnings of the study. Recommendations for
future work are presented as well.

LITERATURE REVIEW
One of the challenges in academic education of professional courses is the continuous revision of
the course syllabus to meet the growing demands of the profession and the industry. Software Engi-
neering is one of those professional courses that is required to adapt continuously. Most faculties
acknowledge that there are gaps between how Software Engineering is being taught in the classroom
and how Software Engineering teams work in real life. It is therefore imperative that the academe
continues to design the curriculum to bridge these gaps.

Two related pedagogies are presented in this study – Collaborative and Interdisciplinary. Each has its
own hallmark in the field of education. The collaborative approach has been the primary approach to
teaching Software Engineering through projects. This study improved teaching and learning Software
Engineering by integrating an interdisciplinary aspect. In doing so, we move a step closer to bridging
academe training and industry practices.

COLLABORATIVE APPROACH IN SOFTWARE ENGINEERING EDUCATION
Research in Software Engineering Education suggests that a more practical delivery of the course
through projects is favorable. This is where a collaborative approach to teaching Software Engineer-
ing comes in. Collaborative learning is an umbrella term for a variety of methods in education that
involve “the joint intellectual effort by students or students and teachers” (The University of Sydney
School of Education and Social Work, 2018). This methodology covers activities such as collabora-
tive writing and group projects. The collaborative work in Software Engineering Education is one
that requires students to work together to explore and develop a software solution to a problem. Ac-
cording to Blaschke (2012), these types of educational strategies are often driven by an emphasis on
providing students with the skills and attributes to become “self-determined” and “highly autono-
mous” life-long learners. This also means that lessons learned during their collaborative experience
are deeply ingrained more than the lessons learned in the classroom.

Most Software Engineering Education case studies presented different ways of collaboration among
Computer Science students (Giraldo et al., 2010; Kirti et al., 2015) using various frameworks and
tools. Some presented results of collaboration between students and real clients (Chase et al., 2007;
Chen & Chong, 2011; Flener, 2006). Mead (2015) acknowledged this need for university-industry
collaboration in order to advance Software Engineering education. She proposed a strategy in the

Collaborative Approach in Software Engineering Education

130

form of industries serving as real clients to the students to provide for practical industry problems,
to provide direction as to the technology to be used and to help review deliverables.

Various researchers have also presented different strategies for teaching Software Engineering. For
instance, Gannod, Burge, and Helmick (2008) studied the use of inverted classroom and Reichlmayr
(2005) utilized blended learning approach. Stein (2002) experimented on group size (small or large
groups) in capstone and Software Engineering courses. Stettina, Zhou, Bäck, and Katzy (2013), on
the other hand, introduced the intensive coaching of teams and the notion of team routines. Chen
and Chong (2011) also introduced the meetings-flow approach as a process to improve software en-
gineering practice. For most of these researchers cited, collaboration among software engineering
students is emphasized.

Collaborative learning has been generally employed in other Computer Science courses as well espe-
cially in programming classes. For example, Bower and Richards (2006) designed and implemented a
collaborative framework for object-oriented programming that gained positive response from stu-
dents. They found that better performance and increased student satisfaction demonstrate that pro-
gramming in teams can operate successfully and improve educational outcomes.

INTERDISCIPLINARY APPROACH IN SOFTWARE ENGINEERING EDUCATION
Interdisciplinary teaching is a method used to teach a topic across different curricular disciplines.
McCuskey and Conaway (1995) said that the approach is “really an old friend under a new-old name”
(p. 395). Accordingly, interdisciplinary teaching is already practiced by some teachers when they try to
make concrete the abstract concepts using other related disciplines as context. By doing so, the stu-
dents can grasp these abstract concepts easily. In addition, the way that the curriculum is developed
can inherently be interdisciplinary. An example is presented by Rick Oches (2012) from Bentley Uni-
versity when he integrated the topic on ethanol to teach sustainability issues. The module he created
on ethanol tied together other disciplines such as Chemistry, Ecology, Economics, Engineering, En-
vironmental Science, Geology, Political Science, and more. In the course design, the students under-
stood the production of ethanol by being tasked with making it a part of an environmental chemistry
course. In addition, the students are also tasked to perform a cost-benefit analysis for ethanol pro-
duction and consumption in a microeconomics course. And finally, they learn about the legislative
process involved in energy production and use this in a public policy course. Clearly, this interdisci-
plinary approach induces a deeper understanding of ethanol and its production.

The hallmark of an interdisciplinary learning is on the cognitive development of the students partic-
ipating in the interdisciplinary environment (Repko as cited in Goldsmith, Hamilton, Hornsby &
Wells, n.d.). Specifically, Repko (as cited in Goldsmith, Hamilton, Hornsby & Wells, n.d.) identified
four cognitive abilities that are cultivated in interdisciplinary learning. First, is the Perspective-taking
Technique. This is the capacity of the learner to understand a topic or problem from multiple view-
points. This understanding leads to an appreciation of different disciplines and their perspective on
the topic. Second, is the Development of Structural Knowledge. This knowledge is a combination of
Declarative Knowledge or the factual information and Procedural Knowledge or the process-based
information used to solve complex problems. The third cognitive ability pertains to Integration of
conflicting insights. Learners become creative when faced with various and maybe conflicting per-
spectives to a problem. As a result, new and better solutions can be created. The last cognitive ability
is Interdisciplinary Understanding. This entails that learners see the situation through different lenses
and recognize how each perspective affect the other.

Interdisciplinary learning has been applied in various ways in the Computer Science program. One
implementation is seen in the field of research. As an example, Simon Fraser University implemented
the Modelling of Complex Social Systems (MoCSSy) Program in 2008. The program allowed stu-
dents from different disciplines to work on research problems within the program’s five research
themes – culture, society and human behavior, communication, computation and technology, and

Vicente, Tan, & Yu

131

health (Giabbanelli, Reid & Dabbaghian, 2012). With this approach, Giabbanelli et al. (2012) found
that Computing science majors and non-majors have learned to appreciate working with each other
and proposed solutions that were recognized by the academic community. Similar interdisciplinary
research programs have also been implemented at George Mason University for the Ph.D. in Com-
putation Social Science and Carnegie Mellon for Ph.D. in Computation, Organizations, and Society
(as cited in Giabbanelli et al., 2012).

An interdisciplinary approach can be implemented in course design as well. For example, the Multi-
media Information Systems at the University of Otago was designed to be an interdisciplinary pro-
gram taught by faculty from both the Design Studies and Information Science Departments (Wong,
McGuire, & McDonald, 1996). They argued that their approach to Multimedia education is closer to
the way real-world titles are produced. They justified that “multimedia production is by necessity a
multi-disciplinary effort, requiring the talents of both creative and technical professionals” (Wong et
al., 1996).

O’Leary and Azadegan (2005) also published a similar interdisciplinary course for scientific modeling
and simulation. The course was participated by Computer Science, Science and Math majors. They
found that despite the differences in background knowledge and experiences, the students liked the
challenges. These challenges are introduced by deficiencies in their background in mathematics, pro-
gramming and science, the complexity of mathematics involved, and the difficulty of the course pro-
jects. Their results suggested that learning something practical made the course interesting. As a re-
sult, the course has been well received by the students and many of them felt they learned much.

The research of O’Leary and Azadegan (2005) implemented interdisciplinarity using problem-based
learning. Nikitina (2006) classified this type of implementation as a potential strategy for interdisci-
plinary teaching. Problem-solving in this respect involves enlisting the knowledge and modes of
thinking in several disciplines to address real-life problems that take more than one discipline to solve
(Nikitina, 2006). When applied to team-based problem-solving, interdisciplinary learning, therefore,
can be seen as a form of collaboration among different disciplines.

In the case of Software Engineering Education, however, this collaboration with other disciplines in
the delivery of the course is rarely studied. As cited in the literature, the collaboration in most case
studies is limited to collaboration among computer science students and their clients. A reason would
be that learning the software engineering skills themselves are already “quite a bit to master” (Jaccheri
& Sindre, 2007) and an interdisciplinary environment can add more complexities to the project as it
is. Despite the complexity, Jaccheri and Sindre (2007) explored this interdisciplinary environment for
Software Engineering Education by creating the Expert in Team (EiT) course. The course was en-
rolled in by Software Engineering students and students in many other various programs. The course
encouraged creativity by allowing interdisciplinary teams in so-called Software Villages (themed vil-
lages) to identify their problems and goals and to develop solutions within their village teams. They
reported that such an interdisciplinary course gave students learning outcomes that are entirely dif-
ferent from what they get from more traditional software engineering team projects, in particular,
concerning interdisciplinary skills and self-insight.

The problem however in EiT is that it had an open-discipline structure. The course was structured as
such in order to foster creativity among students with an emphasis on self-reflection as a learning
outcome. Students taking the course are presumed to have already taken the prerequisite Software
Engineering courses. Hence, Software Engineering methods and practices, as a learning outcome, are
not emphasized.

This case study differed from the work of Jaccheri and Sindre (2007) in the structure of the interdis-
ciplinary framework. While Jaccheri and Sindre (2007) introduced an open-discipline environment,
this study presented a multi-disciplinary structure that mimics the typical composition of Software
Engineering teams based on roles. The justification for this environment follows from Lave’s (1988)
learning theory of Situated Learning (as cited in Ellis, Demurjian & Naveda, 2009). Situated Learning

Collaborative Approach in Software Engineering Education

132

is concerned with the environment where active learning takes place. In this learning theory,
knowledge is situated as a product of the activity, context, and culture in which it is developed.
Therefore, in order to be effective, the project environment should be as authentic as possible. Ellis
et al. (2009) cited several applications of this theory in Software Engineering education that incorpo-
rates aspects of realism into the class project such as in the work of Hayes (2002) when they used an
industrial participant to play the role of a customer and Favela and Pena-Mora (2001) when they
studied large, distributed teams across geographical locations.

Another differentiation is seen in this case’s learning outcome. Jaccheri and Sindre (2007) emphasized
on self-reflection as a learning outcome. This study, on the other hand, focused on enhancing stu-
dents experience to achieve a richer, deeper understanding of Software Engineering methods and
practices.

Rus and Lindvall (2002) concluded that interdisciplinary problem-solving working groups are benefi-
cial because “this will transfer the knowledge from one discipline to another, as well as provide solu-
tions to interdisciplinary problems in decreased time”. Interdisciplinary learning, therefore, affords a
different kind of learning as it allows “acquiring new insights on what students have learned by ap-
plying it to new contexts” (Jaccheri & Sindre, 2007). It is therefore interesting to understand how
these interdisciplinary working groups should interact in a classroom project setting to achieve this
particular kind of learning.

WHY INTERDISCIPLINARY APPROACH IS TIMELY AND RELEVANT
In the previous section, the interdisciplinary approach was presented in the light of Situated Learning
Theory. This section augments to the study’s theoretical foundation by taking a look at diversity in
real-world software engineering teams.

The concept of bringing diversity in software development teams has since piqued the interest of
researchers in the attempt to improve team performance (Gottschalk & Solli-Sather, 2007). A review
of 40 years of diversity research by Williams and O’Reilly (1998) concluded that there were no con-
sistent main effects between diversity and organizational performance. According to them, instead of
arguing that diversity positively affects team performance, certain mediating variables between diver-
sity and performance may exist and be studied. To this end, Liang, Liu, Lin, and Lin (2007) explored
the relationship of conflict as a mediating variable between diversity and performance. They con-
cluded that Knowledge Diversity, interestingly, in contrast to their hypothesis, significantly increases
task conflict. Task conflict, on the other hand, positively affects team performance. It follows then
that Knowledge Diversity can positively affect team performance. Liang et al. (2007) further charac-
terized Knowledge Diversity as the differences in education and experience. This goes to say that
members with differing experiences and educational backgrounds may provide a variety of view-
points, influence task conflict, and help improve the quality of decision making. These factors may
save mission-critical projects at critical points in the project (Liang et al., 2007).

TechBeacon (www.techbeacon.com), a digital hub created for and by software engineers and IT pro-
fessionals, published a number of articles written by Software Engineering professionals on the bene-
fits of diversity in software engineering. Diversity is not limited to gender or ethnicity, as presented in
most diversity and inclusion reports made by IT organizations. Real and meaningful diversity requires
a collection of individuals with unique perspectives coming from their backgrounds, knowledge, past
experiences and environments (Cooper, n.d.). While Cooper made this generalization in the context
of Software Testing, the same cannot be any different in other phases of software engineering, such
as in Requirements Engineering.

It is therefore appropriate that Software Engineering education inculcates the interpersonal skills
necessary to make team diversity work. This industry need justified the study’s practical relevance.

Vicente, Tan, & Yu

133

RESEARCH OBJECTIVES
The literature review showed that the approach to Software Engineering education through projects
has been limited to collaboration between Computer Science students. Working with non-Computer
Science students on software engineering projects is rarely employed, especially one that mimics pro-
fessional software engineering teams. With the goal of enhancing student learning, this study ex-
plored the application of the interdisciplinary approach to software project development. This inter-
disciplinary approach, interestingly, mimics the composition of software engineering teams.

This case study explored the ways to improve the delivery of Software Engineering through projects
and consequently, the students’ learning. This exploration is guided by the following research ques-
tions:

RQ1. What factors strongly influence a successful software project in an interdisciplinary project en-
vironment?

RQ2. What software engineering skills or knowledge are enhanced through the interdisciplinary ap-
proach?

METHODS

METHODOLOGY
This study adopted an exploratory, single-case case study methodology (Yin, 2009). As the study’s
context, the implementation of the Interdisciplinary Service Innovation Program (ISIP) for one se-
mester is studied. ISIP was participated in by students enrolled in three courses in the University.
Each course represented three different disciplines – Computer Science, Business Management and
Product Design. Qualitative and Quantitative data pertaining to the delivery and relevance of the
program in relationship to the individual course objectives were collected and synthesized.

RESEARCH CONTEXT
The Interdisciplinary Service Innovation Program (ISIP) was a first-time endeavor participated by
three courses in the university — CMSC 128 Software Engineering in BS Computer Science, MGT
173 Marketing Management in BS Management and VC 26 Design Workshop in the BS Product De-
sign program. The goal of the program was to allow the students to experience creating a project
that will improve the services of their target client. During their experience, they applied the core
skills taught in their respective programs. They also learned new skills from team members and
learned more of the real-world challenges in project development especially that they worked with
students coming from different backgrounds.

For Computer Science, ISIP also served as an avenue to teach practical lessons to students on collab-
oration and communication as these are essential skills in the agile world of Software Engineering
and to emphasize best software engineering practices. That is, on top of the application of Software
Engineering methods and skills simultaneously discussed in class.

The faculty of the three courses (also referred to in this paper as proponents) followed their respec-
tive course syllabi. However, the related course milestones are aligned in a synergy of course re-
quirements. In essence, all individual course requirements were targeted at the development of a ser-
vice innovation project for the clients. Table 1 summarizes this alignment. This alignment showed
that the three courses complement each other in terms of competencies necessary for project devel-
opment. More specifically, project management and service marketing skills from Management stu-
dents, a user-based design from Product Design students and problem-solving and software devel-
opment skills from Computer Science students.

Collaborative Approach in Software Engineering Education

134

Table 1. Aligned Course Outline for CMSC128, MGT173, and VC26

WEEK MANAGEMENT DESIGN COMPUTER SCIENCE
1 What is service thinking? Kick-off meeting
2 Services Marketing Introduction to Design Thinking Software Engineering Process

Agile Process Models
3 Value proposition Observation Requirements Gathering
4 Value proposition Observation Requirements Modeling

5 Needs and Opportunity Assess-
ment Ideation; Brainstorming Tools Requirements Modeling

6 Service Blueprint Ideation Scrum: Project Initiation and Release
Planning

7 Concept Evaluation Technique /
Positioning Project Proposal Presentation Scrum: Sprints

Project Proposal Presentation

8 Budgeting Rapid prototyping Scrum: Sprint Review and Retrospect,
Change Management

9 Testing and Forecasting / Meas-
urement and Control

User Feedback & Iteration;
Group consultation Product Development

10 Iteration; Group consultation Product Development
11 Group consultation Iteration; Group consultation Product Development

12 Group consultation User Feedback & Iteration;
Group consultation Product Development

13 Group consultation Iteration; group consultation Product Development

14 Group consultation Implementation; group consulta-
tion Product Development

15 Group consultation Implementation; group consulta-
tion Product Development

16 Submission of Second Draft Submission of Second Draft Project Presentation and Deployment
17 Presentation of first 5 groups
18 Presentation of remaining 5 groups

The proponents created ten interdisciplinary teams for the program. Each team comprised of 10 to
11 students — four Management, five Computer Science and one to two Product Design. At the end
of the program, each team created a service innovation product in the form of a software applica-
tion. The students achieved this by carrying out their respective course requirements and activities
together with other interdisciplinary team members.

The success of the program relied on excellent communication, especially amongst team members.
To expedite team formation, the students attended a 3-day team-building activity administered by a
third party. The activity was aimed at improving the students’ confidence, establish rapport with the
other students, and ultimately build teams.

Interdisciplinary, collaborative framework
Figure 1 presents the framework of the Interdisciplinary Service Innovation Program. It is within
this framework that an interdisciplinary approach to teaching and learning Software Engineering is
induced.

The framework highlights real-world and interdisciplinary collaboration among students from differ-
ent fields and between teams and real clients. In addition, other structures are placed to support the
implementation of the program. The succeeding sections discuss in detail the descriptions of these
elements of the framework.

Vicente, Tan, & Yu

135

Project selection
The idea of an interdisciplinary program primarily sprung from the University’s vision to take the
leadership role in ICT-driven innovation in Central Visayas, where the university belongs; and sec-
ondly, its mission of relevance to the region. Since the services and tourism sectors comprise more
than 50% of the region’s gross domestic product (Silva, 2017), the proponents from the School of
Management and Department of Computer Science believed that improving essential services of the
province will provide support to these sectors.

Aside from the traditional approach of lectures and textbooks, the proponents considered using real
clients to expose students to real-world technical and management issues when proposing innova-
tions. The public ports and terminals in Cebu City were invited to become the clients for service in-
novation. The support and active participation of the industry partners are essential to the success of
the collaboration. A Memorandum of Agreement formalizing the partnership between the University
and Cebu Ports Authority (CPA) and Cebu South Bus Terminal (CSBT) were forged, respectively.

As an overview, the CPA and CSBT representatives presented their organizations, their respective
vision and mission, problems and difficulties encountered and possibilities for service innovations to
the students. Based on research, available data from the public ports and terminals, customer surveys,
and end-user interviews, the teams were tasked to identify opportunities where they can implement
technological innovations to improve the public service. Five teams worked on the CPA projects
while the other five handled CSBT. The students presented the proposed plans to both the clients
and faculty facilitators for approval and recommendations.

To encourage the identification of good projects, the program partnered with the Cebu TTBDO-
TBI, the technology incubation hub of the University. With this partnership, the Cebu TTBDO-TBI
promised to incubate projects with market potential for further development.

Product development and closing
At the program kickoff, the proponents provided the rationale, learning objectives, and expected
outputs of the interdisciplinary program. The Software Engineering faculty provided the students an
introduction to the Scrum software development process as well. The proponents acknowledged ear-
ly on several uncertainties in the project that can be attributed to the teams’ inexperience in software
development. In the first place, this is the first time that the students are introduced to software engi-
neering. The Scrum software development process was deemed appropriate because it is iterative,
and its retrospective nature allows for teams to improve both the product and their dynamics
throughout the program.

Figure 1. Interdisciplinary Service Innovation Program Framework

Collaborative Approach in Software Engineering Education

136

After the initial presentation of the industry partners, the individual teams investigated further the
opportunities for service innovation. The Management team members spearheaded the identification
of problems and opportunities. On the other hand, the Computer Science students introduced alter-
native software solutions, and the Product Design students helped envision product usability. The
teams improved on the best software idea. Afterward, they presented the project and product vision
to the client and faculty for approval and feedback.

Following the Scrum methodology as a guide, components of the software are iteratively developed
during each Scrum sprint. The program had four two-week sprints with new features and functionali-
ties introduced in each sprint. The teams met at the beginning of each sprint to plan for the sprint
deliverables. The Management team members were in-charged of gathering information at the client
site, such as interviewing frontline employees, support staff, and most especially the passengers or
users of the public terminals. User requirements were extracted from these interviews, modeled and
implemented in code by the Computer Science students. The design of user interfaces was handled
by the Product Design students.

At the end of each sprint, the teams met with the faculty facilitators and their clients. This phase is
also known as Sprint Review. During sprint review, the software products were tested for usability
and acceptance. Recommendations for improvement and additional requirements were also raised
during the meeting so that the teams can accommodate them in the next sprint. The faculty also as-
sessed the performance of the teams and their individual members during Sprint Review.

The Computer Science faculty facilitator, who acts as the Scrum Master, regularly initiated a retro-
spective meeting, also known as Sprint Retrospect. This meeting was set to discuss what the team
needs to improve on in order to increase productivity. It is also during these sessions that the mem-
bers of the team raised their concerns that need resolving with the help of the Scrum Master. For
Software Engineering class, the Sprint Retrospect served as the time when the faculty was able to
emphasize software engineering practices that have been discussed in class.

The students were encouraged to meet as often as possible (preferably every day) to discuss their
progress on the tasks that they committed to work on. The proponents worked closely with their
respective students on the projects.

At the end of the four sprints, each team presented their software products during a final presenta-
tion with the clients and other stakeholders.

Colocation is a critical factor in the formation of the Scrum teams. This is especially because the
outputs of the Software Engineering students need the active participation of their counterparts
from the Management and Design courses. To implement Scrum’s recommendation for colocation,
the University provided workspaces for all the teams to be able to meet face to face and work on the
projects outside of their regular class schedules. The workspaces had large common tables and secure
internet connections. Furthermore, each team was allotted minimal allowance to defray travel ex-
penses going to client sites and costs for supplies and materials.

DATA COLLECTION AND ANALYSIS
The Sprint Retrospect initiated by the Scrum Master provided first-hand data about the experiences
of the students. Aside from Sprint Retrospect, an end-of-program evaluation was conducted to gath-
er more data about student interactions, program assimilation, and many others. Each type of evalua-
tion also triangulated pertinent data for analysis. The following evaluations were conducted:

a.) Peer Evaluation

Each team evaluated their team members based on each team member’s performance and con-
tribution. Each team member was given a score of one to ten, ten being the highest, in ten per-
formance dimensions.

Vicente, Tan, & Yu

137

b.) Program Assessment

The program was assessed by the student participants. The assessment included the relevance of
the project to the respective courses and the achievement of the learning outcomes.

There were two types of assessment. The first was a scoring assessment of the general program
learning outcomes using a Likert-type scale of 1 to 5. The second was an open-ended question
asking the students to detail the highlights (best and least) of their experience.

In addition, a separate program assessment was conducted to target the program’s relevance to
Software Engineering education for Computer Science students. In this assessment, the students
were asked to a) rate the contribution of ISIP to their Software Engineering knowledge and skills
and b) detail the specific knowledge/insight or skills that they acquire during the experience.

c.) Focused Group Discussion

Selected teams were interviewed to confirm and discuss the factors that have contributed to their
success or failure. During this meeting, the facilitators probed to uncover team dynamics or pro-
gram structures that influenced the success (or failure) of teams. Two teams, Trak: Bus Tracking
System and Bus Fee Payment and Monitoring, were invited to this meeting. The invited teams
represented the accomplished group and the needs-improvement teams, respectively.

RESULTS
The list of projects completed by the ten teams is presented in Table 2. Each software product ex-
hibited core functionalities that addressed the immediate concerns related to the clients’ services.

Table 2. Software Outputs

Cebu Ports Authority Cebu South Bus Terminal
Angkla: Berthing Management System SBT Directory and Travel Assistance
CPA Directory and Passenger Assistance TRAK: Bus Tracking System
CPA E-ttendance Log and Monitoring Loading Bay Monitoring
Export Management System Baggage Loading System
Porter Assistance System Bus Fee Payment and Monitoring System

Of the ten proposed projects, only two projects did not meet user acceptance due to the poor quality
of software presented — Export Management System and Bus Fee Payment and Monitoring System.
On the other hand, the Cebu TTBDO-TBI identified the following projects for incubation and cli-
ent-use: CPA Directory and Passenger Assistance, TRAK: Bus Tracking System, Loading Bay Moni-
toring, and Baggage Loading System. The clients accepted the other remaining projects, but with re-
visions.

The clients’ acceptance of the majority of these projects signified success of the program in terms
of the methods employed in software development.

PROGRAM ASSESSMENT RESULTS
Figure 2 summarizes the students’ assessment of the program. Out of 105 students, 79% of the
combined students (83 out of 105 students) submitted their evaluation. Results show that the Com-
puter Science students were able to assimilate reasonably well (average of 4.4 out of 5.0) with the
target outcomes set by the program, except in the case of leadership (4.0). The relatively low evalua-
tion in "leadership" (compared to the Management students) may be due to the specific roles that
each course was assigned to. For instance, the Computer Science and Design students were taking

Collaborative Approach in Software Engineering Education

138

cues from the Management students as to the direction of the project since the Management stu-
dents were assigned to identify the needs and opportunities of the target clients.

The students were also asked to identify highlights of the program that have both positive and nega-
tive impact on their learning and in their project. Their responses were coded and from which com-
mon themes were extracted. Table 3 and Table 4 enumerate the various themes drawn. Note that
because the survey is an open-ended question, respondents can have zero to multiple answers or that
respondents can have similar answers. The percentage indicated in the tables that follow represent
the counts of similar responses (themes) normalized by the total number of responses. In general,
the student responses were consistent with the results of the course evaluation.

It is no surprise that the best thing about the combined course is the Experiential Learning (Active
Learning, Collaboration, and Real-World Insights). Working with personalities from different fields,
creating service innovation to solve real problems, and dealing with consultants (faculty) and real cli-
ents is a far cry from just learning from textbooks. In addition, working on a project relevant to the
society provided a different meaning to the project they are working on. Based on the evaluation,
these factors have made a positive impact on the learning of the students under the program. It is
likely that this positive outlook towards the program must have contributed to the success of the
majority of the teams. Moreover, the students perceived other program elements such as Product
Development Methods, Team Building Activities, and Financial Assistance as motivating factors.

Figure 2. Program Evaluation in relation to the learning outcomes

Notes: CS - Computer Science students; MGT - Management students; PD - Production Design students

Vicente, Tan, & Yu

139

Table 3. Program Highlights (Best)
 DESCRIPTION % of Re-

sponses EXAMPLE ENTRIES

Active Learning Learning new technical skills,
experiential learning 21.1% “I learned a lot from it, not only what was being taught but also

from our own experience.”

Collaboration Being able to work with
others 21.1%

“Collaborating with students from different courses exposed me to
the possible challenges that I will be facing when I graduate and start
working.”

Social Skills Im-
provement

Improving communications
skills 13.7% “Helped me improve as a person involving me in social discussions”

Real-world Insights Real client, real project, and
real challenges 12.4% “Real life problems were given and we had to work as if we were a

start-up team. Experience-wise, it was really good.”

Project Relevance Product’s usability 8.7% “Being able to develop something, specifically an application/project
that aims for the betterment of another system.”

Working in Teams Experiencing team work;
being part of a team 8.1% “The sense of struggling together and winning together.”

Product Develop-
ment Activities

Processes involved in prod-
uct development 7.5% “Group meetings. Delivery of the products (sprints)”

Integration of
Course

Synchronization of individual
course requirements 3.1% “…communicating and translating expectation from one field to

another.”

Team Building Third-party team building
activity 3.1% “The event/things I like best is being able to experience the Kool

Adventure Camp”
Financial Assis-
tance

Allotment of financial assis-
tance 1.2% "the course provided me the allowance we need to complete the

project.”
Total No. of Coded Responses = 161

Table 4. Program Highlights (Least)

DESCRIPTION % of Re-
sponses EXAMPLE ENTRIES

Time Project development
requires more time 26.0% “the thing I like the least is how much time is dedicated to this

course.”

Schedule Mismatch Course or student sched-
ules do not match 24.0% “We have different free time which makes it hard for us to meet

together.”

Commitment to Task Members commitment to
team agreements 6.3% “Other members who would cram which affects the whole

group/system.”
Pressure Stress from pressure 6.3% “Sleepless NIGHTS because of deadlines.”

Team Formation How the teams are formed 6.3% “nothing, just my groupmates”

Team Storming Problems among team
members 6.1% “It takes most of the time, sometimes the misunderstanding with

the groupmates”

Prerequisite Lack of prerequisite
knowledge or skills 5.2%

“There could also be more talks and class that taught skills neces-
sary for the project such as CSS for the CMSC and UI and UX
design for Product Design.”

Communication Prob-
lems Inaccessibility of members 4.2% "It’s also hard working with other courses because people have

different say on things."

Faculty Coordination Unclear instructions from
faculty 4.2% "Profs from the different program have a different vision for the

project"

Project backlogs 4.1% “What I really don’t like are the frustrations that are __ when the
software’s bugs seemed to be so hard to fix”

Changes in schedules Unprecedented schedule
changes 2.1% “What I didn’t like about the course is the abrupt change of

schedules.”

Overlapping roles Project roles tend to over-
lap creating confusion 2.1%

“The multi-disciplinary set up has set certain tasks on each but
some tends to get outside/beyond the boundary of assigned tasks
and makes the distribution of tasks unequal”

Process Adaptation Slow adaptation to product
development process 1.0% “Working in small increments is a new concept for me, and I’ve

never fully adapted to it.”

Expensive Has financial implications 1.0% “very demanding of the time, energy and money (but it’s okay)”

Other Course Require-
ments

The tendency to focus on
individual course require-
ments

1.0%
"I believe that the management students were not of much help
to the team considering that we were more concerned about
finishing our final paper than developing the system in general "

Total No. of Coded Responses = 96

Collaborative Approach in Software Engineering Education

140

Since it was ISIP’s pilot run, it was also essential to recognize the factors that have had adverse ef-
fects on the performance of the students. These factors need to be considered for the program’s fu-
ture improvement. Table 4 shows that Time is the most significant factor that impeded project de-
velopment. The students had difficulty finding a common time to meet because the schedule of the
courses was different for each class. As a result, most of the teams who did well needed to allocate
more time (i.e., working at night and on weekends) to finish the projects. On the other hand, the
most common complaints of the teams that didn’t do well in the program were the perceived Lack
of Commitment of their teammates to the assigned tasks and Communication problems. These too
can be a consequence of schedule constraints.

The proponents recognized from the start that one of the challenges in this pilot run will be the
Formation of Teams. Since the students come from different courses, with different personalities
and priorities, the faculty contracted an external organization to conduct team-building activities with
the students and fast-track the process of Team Formation. While a number of students appreciated
this activity (Table 3, Team Building), there are those who did not perceive the activity as effective
because the teams during the team-building activity were not grouped according to the actual teams.
As one student noted:

“The Kool Adventure Camp should and must be grouped according to the actual teams. I have been to KAC
7 times already and it never failed to unite the most diverse group.”

PEER EVALUATION RESULTS
The Peer Evaluation instrument measured how well each team member performed within the team
in ten performance dimensions. The average of students’ mean of scores, 8.9, generally depicts a
substantial cooperation among team members in each team. Table 5 summarizes the peer evaluation
results of the teams in each performance dimension.

Table 5. Peer Evaluation Summary

 Performance Dimensions

Teams

A
tte

nd
an

ce
 a

t
M

ee
tin

g

Pu
nc

tu
ali

ty

C
on

tri
bu

te
s I

de
as

In
iti

at
es

 Id
ea

s

A
cc

ep
ts

 R
es

po
n-

sib
ili

tie
s

O
n-

tim
e

Su
bm

is-
sio

n

Po
sit

iv
e

W
or

k
A

tti
tu

de

O
rg

an
iz

ed

Pr
ep

ar
ed

ne
ss

K
no

w
led

ge
ab

le

SBT Directory and Passenger Assistance 9.13 9.17 9.36 9.36 9.69 9.69 9.63 9.50 9.56 9.32

TRAK: Bus Tracking System 9.27 9.57 9.64 9.43 9.92 9.55 9.85 9.67 9.52 9.52

Loading Bay Monitoring 8.98 9.24 9.35 9.22 9.53 9.40 9.26 9.42 9.35 9.58

Baggage Loading System 8.39 8.81 9.42 9.15 9.58 9.24 9.56 9.32 9.18 9.35

Bus Fee Payment and Monitoring System 8.52 8.81 8.50 8.38 8.96 8.59 9.13 8.64 8.73 8.88

Angkla: Berthing Management System 8.00 8.08 8.55 8.28 8.83 8.00 8.52 8.56 8.35 8.57

CPA Directory and Passenger Assistance 8.66 8.78 9.03 9.03 9.24 8.84 9.38 9.32 9.06 9.00

CPA E-ttendance Log and Monitoring 8.91 8.65 8.54 8.57 9.19 8.68 8.91 8.97 8.80 8.99

Export Management System 8.57 8.63 8.29 8.26 8.86 8.17 8.63 8.48 8.44 8.67

Porter Assistance System 8.31 8.61 8.61 8.58 8.94 8.81 9.30 8.98 8.68 9.12

The minimum and maximum team averages are highlighted in the table. The lowest average ratings
are written in bold, while the maximum average ratings are underlined. It is interesting to note that
the lowest average performances are in the Attendance to Meeting, Idea Contribution, Punctuality,
and On-time Submission dimensions. These low-score dimensions coincide with the negative factors
presented in Table 4. That is, all these are related to Time. The highest scores are in the following
aspects: Acceptance of Responsibilities, Positive Work Attitude, and Knowledge about the project.

Vicente, Tan, & Yu

141

The low evaluations for the Attendance, Punctuality and On-time Submission can be attributed to
the differing schedules of the three courses. One of the most common complaints of the students
across all classes was finding a common time for all the group mates to be able to meet face to face.
To recover lost time due to the lack of common schedule, the groups met online and in smaller
groups to discuss their projects.

The high ratings for Acceptance of Responsibilities and Positive Work Attitude of the students show
the favor of the students to the multidisciplinary class.

SOFTWARE ENGINEERING EVALUATION RESULTS
This section presents the results of a separate survey to assess the program specific to Software En-
gineering education. This survey was participated in by the Computer Science students.

The results show that out of the 87% respondents (47 out of 54 Computer Science students), 72%
started the program with a Poor-Fair skill or knowledge self-rating. At the completion of the course,
62% rated their perceived level of skills or knowledge Very Good to Excellent, while 32% rated hav-
ing a Satisfactory skill or knowledge. This means that the students have generally learned and ac-
quired new skills during the program. On top of that, 70% (Very Good to Excellent) attributed this
learning to the program itself. Table 6 refers to the counts of students’ program evaluation respons-
es.

Table 6. CMSC 128 Program Evaluation

 Poor Fair Satisfactory Very
Good

Excellent

Level of skill/knowledge at the start of the
course 11 23 10 1 2

Level of skill/knowledge at the end of the
course 0 3 15 22 7

Level of skill/knowledge required to complete
the course 1 3 12 21 10

The contribution of course to skill/knowledge 0 3 11 20 13

The students are further asked about the specific knowledge or insights and skills that they acquired
during the program. The probe was narrowed to the three major phases of software development —
(a) Requirements Gathering, (b) Design and Development of Software and (c) Software Testing. Just
as in the previous surveys, the raw, open responses are coded, categorized according to skills or in-
sights, and tabulated. The succeeding sections present these tabulated results. The percentage indicat-
ed in Tables 7 to 12 represent the counts of similar responses (themes) normalized by the total num-
ber of responses.

Table 7. Skills acquired during Data Gathering
Skills % Responses

Asking the Right Questions 33.3%
Team Communication, Communication, Involve Client through

Communication
25.9%

Active Listening 7.4%
Negotiation, Negotiating conflicting requirements 7.4%

Problem Solving, Systems-Thinking 7.4%
Requirements Analysis 7.4%

Patience 3.7%
Requirements Modeling 3.7%

Total no. of responses coded as Skills = 27

Collaborative Approach in Software Engineering Education

142

Since the collaborative program is the first time that the Computer Science students are introduced
to software development, it is just likely that the top skill that they acquired during requirements
gathering was to ask the clients right questions. Table 7 tabulates the students’ responses on the skills
acquired by the students during Requirements Gathering.

The results also show that Communication skills, a skill essential in team-based projects, emerged as
one of the prominent skills that the students acquired from the program. Equally important is the
articulation of the technical skills for software development — Problem Solving, Requirements
Analysis and Modeling.

On the other hand, Table 8 summarizes the insights that students have gained from their experiences
during project development. Apparently, the tenets of agile development on collaboration appeared
to be the most learned from their experience. It is supposed that the iterative and retrospective nature
of Scrum provided the students the avenue to correct their mistakes of the previous sprint. The mis-
takes were resolved through collaboration with the client and their team members. It is also noted
that the use of User Stories and Story Maps as modeling tools have helped the student in their pro-
ject. Although minimal, it was noted that some students articulated the idea of ‘Shift in team roles as
the need arises’. This insight is one that is descriptive of an agile team. However, in Table 4 Program
Highlights (Least), this ‘shift in roles’ is seen as an overlap in functions and that this had a negative
effect on the team. It appears now that some members, apart from the Computer Science members,
have not yet fully assimilated this characteristic of agile software development.

Table 8. Data Gathering Insights
Category Insights/Knowledge % Responses

Data Gathering

Client requirements maps User Satisfaction 2.2%
Consider all stakeholder in requirements gathering 8.7%
Progressively elaborated nature of requirements 8.7%
Negotiating conflicting user requirements, establishing win-win solutions 4.3%
Meaningful client involvement in establishing requirements 21.7%
Observation as a requirements gathering tool 2.2%
Requirements specification and verification 4.3%
Take heed of details 2.2%
The team should understand requirements. 2.2%

Modeling Appreciate user-focus 2.2%
Incorporating insights from other people in modeling the system 2.2%
Modeling is important to meet highest user experience 2.2%
Prototyping to model system 2.2%
Use of Story Maps to give perspective on how software should behave 2.2%
User Stories to model requirements 8.7%

Planning Importance of planning 6.5%
Planning takes more time than coding 2.2%
Prioritizing requirements helps in planning work 2.2%
Shift in team roles as the need arises 2.2%

Others Make software work can be prioritized more than data gathering and modeling
because of time constraints

2.2%

Importance of Team communication 6.5%
Use of technology to communicate is more convenient 2.2%

Total no. of responses coded as Insights = 46

Moreover, Tables 9 and 10 present the summary of the skills and insights that the students acquired
concerning Design and Development. The technical skills acquired by the students are commendable
considering that, for some teams, the technology stack used for their project was relatively new. More
than anything the students learned resourcefulness as a team in order to deliver their product (refer
to Table 9) Self-learning new technologies.

Vicente, Tan, & Yu

143

It is also significant that the students learned the relevance of good requirements gathering to soft-
ware design (refer to Table 10) Communication remains to be an essential element in the develop-
ment of projects as experienced by the students. In addition, the students appreciated the existence
of a Software Engineering methodology to guide them in their project development. Although min-
imal, the students’ insight on leveraging team members’ expertise was highlighted. This insight is
practically the essence of the interdisciplinary program.

Table 9. Skills acquired during
Design and Development

Skills % Responses
Self-learning new technologies 29.4%
Teamwork 29.4%
Database and software development 5.9%
HTML 5.9%
Mobile development 5.9%
Pair programming 5.9%
Practice UI design 5.9%
Prototyping 5.9%
User interface design 5.9%
Total no. of responses coded as Skills= 17

Table 10. Design and Development Insights

Category Insights/Knowledge % Respons-
es

Design

Client perspective and developer perspective are different 2.3%
Consistency in user-interface design 2.3%
Design of software should complement client environment, user-focused 6.8%
Importance of understanding requirements for a better design, user interface design, usa-
bility

15.9%

Long-term thinking 2.3%
Not everyone knows user interface design, Product Design team members provided good
inputs for user interface design

4.5%

Prototyping as design verification 2.3%
Use of story maps in the design 2.3%
User interface design is just as important 2.3%

Development

Commitment to assigned tasks, timely submission of deliverables 4.5%
Communication is key to successful teams — between dev and design team members and
between team and client

9.1%

Experienced how agile methods work in rapid software development, Fail Fast 4.5%
Importance of task scheduling 2.3%
Programming is difficult when scope and limitations are not clear 2.3%
Since tasks are divided among members, team members agree on specs or versions for
better integration of outputs

4.5%

Software development process helped, saves time, make dev work easier 9.1%
Sprints 4.5%
The more meetings, the better the sprint deliveries 2.3%
Training technology stack before implementation of design will improve delivery schedule 2.3%
Utilization of Designs patterns 2.3%

Others

Designing and developing software are two different things 2.3%
Designing before programming helped 2.3%
Division of work 2.3%
Importance of Time management 2.3%
Use the expertise of each team member in the design and development of software 2.3%

Total no. of responses coded as Insights = 44

Collaborative Approach in Software Engineering Education

144

And finally, this section presents the results for Software Testing. In terms of testing skills, the results
(Table 11) show that the students have not fully implemented the testing skills required of them, i.e.,
writing test cases, code review, etc. This can be attributed to the time required to introduce in-depth
lecture on testing and monitor application of proper testing techniques during sprints. A five-month
(one-semester) Software Engineering course is undoubtedly too short.

Table 11. Software Testing Skills
Skills %Responses

Handle different types of users 25.0%

Hard work 12.5%

Meticulous, pay attention to details 12.5%

Open to suggestions 25.0%

Patience 12.5%

Understanding and foresight in order to be thorough 12.5%
Total no. of responses coded as Skills = 8

Table 12. Software Testing Insights
Category Insights/Knowledge % Responses

Value of Testing Importance of testing, site testing with end-users 18.4%

Test Process

Case coverage during testing should ensure usability 2.6%
Different users to test the system affords different perspectives to im-
prove the system

2.6%

For something to be perfect, it has to be tested multiple times, rigorous
testing before release

5.3%

Integration test the most difficult part of testing 2.6%
Proper allocation of time for testing 2.6%
Site testing is better 5.3%
Test cases done first, use of test cases 5.3%
Testing and validation takes more effort than previously thought, more
than what’s in the books

5.3%

Testing at different levels (unit, integration, system) that tackle different
stages of development

2.6%

Testing at the point of view of the user 2.6%
Testing of increments works 2.6%
Use of unguided user testing 2.6%

Recommendation
More on automated testing 2.6%
More time on testing 2.6%
More training on TDD 5.3%

Quality Mindset

Always code with the user in mind 2.6%
Learning from previous sprints helped improve software 2.6%
As programmers, we can easily lose sight of clients’ perspective 2.6%
Communication improves design 2.6%
Different team perspectives help in design and understanding of systems 2.6%
Getting the right requirements saves having to do rework 2.6%
The quality mindset in product development 2.6%
Understanding the product in order to foresee issues and test the prod-
uct better

2.6%

Others
Murphy’s Law 2.6%
Practice marketing the product 2.6%
Requirements are also known during testing and validation 2.6%

Total no. of responses coded as Insights = 38

Vicente, Tan, & Yu

145

The importance of software testing though was emphasized by the students as one of the knowledge
gained through their experience. The majority of the responses expressed the value of testing to
software quality. Interestingly, Table 12 shows that students also learned from their experience the
impact of other Software Engineering elements such as communication, user-focus, retrospection,
and proper requirements gathering to the quality of the software they produced.

It was also articulated in the responses that the students clamor for an in-depth discussion of ad-
vanced testing techniques such as automated testing. This is because lecture classes ran out of time
for discussing these topics.

DISCUSSION
This case study explored the enhancement of Software Engineering education through an interdisci-
plinary approach. The practiced pedagogy was improved by introducing a different environment
where interdisciplinary students, faculty facilitators, and real-world clients collaborate to learn from
each other’s disciplines. This environment is seen as a microcosm of the industry’s diverse Software
Engineering teams and where both technical and soft skills can be learned.

The three courses in the University — Software Engineering, Marketing Management, and Design
Workshop — prove to be complementing courses as they enhance each other’s learning outcomes as
applied to real-world software projects. More specifically, each of the courses’ learning outcomes
corresponds to the skills and experience needed in software development.

In this discussion, the results presented in the previous section are synthesized in three frames – (1)
students reception of the interdisciplinary, collaborative project development, (2) factors that influ-
ence project completion and (3) software engineering skills and knowledge acquired during the inter-
disciplinary program.

PROGRAM RECEPTION
The program evaluation results show that the ISIP framework was widely accepted by the students.
This acceptance is primarily due to active learning. Students are inclined to the program because the
approach is in line with their learning style -- visual, sensing, inductive, and active (Felder & Silver-
man, 1988). This characteristic of the program is relevant because, according to literature, the reten-
tion of knowledge and skills improve when students are actively involved in the process of learning
(Razmov, 2007).

In the context of interdisciplinarity, the results show that the collaborative nature of the program is
also well received by the students (Figure 2 and Table 3). It should be noted that this study imple-
mented a collaboration among students in multiple disciplines. The argument of collaboration, there-
fore, is taken in the light of interdisciplinary collaboration. In addition, the novelty of the course in-
tegration (Table 3) seemed to excite the students undertaking the program.

Furthermore, the acceptance of a majority (8 out of 10) of the innovation projects by the clients and
incubation of some is an evidence of successful implementation of Scrum software development
practices.

FACTORS THAT INFLUENCE TEAMS AND PROJECT SUCCESS
There are several challenges to incorporating interdisciplinary approach in a course design. Newell
(1994) presented several considerations for designing interdisciplinary courses such as the composi-
tion or assembly of interdisciplinary faculty teams, topics that influence creative tension between
disciplines, student interests, and other mundane considerations such course requirements, scoring
mechanisms, and course credits.

Collaborative Approach in Software Engineering Education

146

For this case study, collaboration-related challenges were also considered since this study, in essence,
followed a collaborative approach. Bower and Richards (2006) shared several reasons why it is a chal-
lenge to implement a collaborative approach in computer science education. They offered the follow-
ing reasons. (1) Student reticence due to the apprehension of not getting the appropriate credit from
collaborative work. Also, Computer Science students may want to avoid peer interactions influenced
by self-confidence, lack of enjoyment or perceived cost in terms of effort in collaborating with oth-
ers. (2) Faculty can be discouraged by the effort that needs to be spent in creating a collaborative en-
vironment or creating collaborative activities. (3) If students work in teams and produce a combined
deliverable, it can be difficult to accurately assess the contribution of each student and fairly appor-
tion marks. (4) Academics may avoid collaboration because they will be uncomfortable with the
technology that is needed to support collaboration. This line of reasoning is resonated with the stu-
dents as well. Students fear that they will not be given ample support during their collaborative work.
And finally, (5) students fear the notion of other team members that are simply free-loading.

Most of the concerns mentioned were considered before and during program implementation. How-
ever, this study continued to investigate several other factors that can influence the collaborative, in-
terdisciplinary curricular intervention. In the first place, it is this study’s goal to enhance student
learning. Both positive and negative factors are identified based on survey results, group discussion
and collective observation of the faculty involved.

This section answers this study’s first research question – What factors strongly influence a successful
software project in an interdisciplinary project environment?

Positive factors
a. Project-Course Relevance

This factor refers to the overall design of the program in relation to course objectives. The results
show that students responded positively to the activity because they were able to experience what
had been taught in the classroom. Learning, therefore, was active. This activity actually matched
the innate learning styles of computer science students according to Felder and Silverman (1988).

b. Product-Community Relevance
Creating software solutions that address real-world problems of real-world clients increased the
students’ motivation to complete the project. This motivator is also present in most case studies
cited that had employed collaborative approaches with real clients (Chase, et al., 2007; Chen &
Chong, 2011; Flener, 2006).

c. Team cohesion

Team cohesion refers to the degree of collaboration among interdisciplinary members of the
team. The students generally responded positively to the presence of teamwork even when the
team is struggling to accomplish some tasks or that even when the members spent more time on
their projects than their other courses. It appeared that in this case, Bower and Richards’ (2006)
student reticence factor is overcome by team identity or teamwork. Peer evaluation results suggest
that positive work attitude and acceptance of responsibilities are good characteristics that must be
embodied by each team member to foster teams.

d. Financial Assistance
This support was appreciated because real-world practice required them to spend for on-site visits
to clients. The visits were intended for requirements gathering, clarification, and product testing.
Financial assistance covered travel, supplies and meals allowance. This support coincides with
Bower and Richards’ (2006) administrative support factor.

Vicente, Tan, & Yu

147

Negative Factors
a. Schedule alignment

The Scrum software development methodology suggests for the members of the team to be col-
located in order to speed up communication, hence speeding-up development. This aspect was
very challenging because the team members are primarily students coming from different pro-
grams. Despite the allocation of team rooms, students still had difficulties meeting because of the
schedule conflict. The students perceived the lack of common schedule as the number one road-
block to their success. Because student schedules did not match, many of the problems such as
absence to meetings, communication, and submission of task outputs emerged.

It is therefore recommended, as an administrative support factor (Bower & Richards, 2006), to
align student schedules so that they can find time to collocate together as a team.

b. Project Vision to be clearly translated into individual course requirements
Although the program’s ultimate output is the software project, the individual courses have specif-
ic course requirements that the student needed to comply. It is noted that this separate submis-
sion drove some students to lose sight of the overall objective and focus on their own course de-
liverables instead. While the supposed learning outcomes were related, the students still had the
tendency to prioritize their individual course requirements.

Apparently, the Scrum discussion at project kickoff was not enough to relate individual course re-
quirements to software development activities. The contribution of the respective course re-
quirements to the overall intended project output needs to be further emphasized.

c. Faculty Coordination
Students complained that it is confusing when faculty facilitators convey differing, worst conflict-
ing, instructions or perspectives. These instructions include the schedule for submissions and in-
terpretation of software requirements. Newell (1994) emphasized this challenge when calling in
colleagues from other teams for collaborative assistance. He mentioned that the faculty involved
in interdisciplinary courses should “hold an uncomfortable idea to the light, turn it around, see
how it might relate to more familiar ideas” (Newell, 1994). This case taught us, therefore, that,
more than the students, the faculty should also practice interdisciplinary thinking. More faculty
coordination is recommended.

d. Team Building and Retention
Even with the 3-day team-building activity, the students noted in their evaluation and observa-
tions that there is a need to strengthen the teams continuously. Some teams had a rough start.
There were those that degraded during the team’s norming stage.

It is recommended that the teams are grouped together during the three-day team-building activi-
ty and that everyone should be required to attend. Moreover, short daily meetings (Stand-up
Meetings) should be required to facilitate communication among team members. Again, schedules
must be aligned.

e. Overlapping Roles
In an agile environment, overlapping roles should be seen as a result of review and retrospection
to speed up product development and creative tension (Newell, 1994). In this particular case study
though, overlapping roles became a deterrent to some Computer Science and Product Design
students. Apparently, as each is considered “experienced” in their fields, efforts to correct each
other had a destructive tendency. Newell (1994) warned against this kind of behavior because the
interdisciplinary contribution of the activity is lost. The creative tension is lost if the disciplines
are seen as specializing in different parts of a whole, such as in the case of students holding on to

Collaborative Approach in Software Engineering Education

148

their roles based on their expertise. This conflict can be resolved with appropriate intervention
from faculty.

f. Course and Program Duration
It was observed and expressed in the survey that the program duration is too short in relation to
its general objectives. The program runs for five months only, taken simultaneously with Software
Engineering lectures and other courses. It is recommended to extend the course and program to
two semesters instead. This will give students ample time to explore each other’s expertise and
build their solutions.

KNOWLEDGE AND SKILL ACQUISITION
The second research question focused on the students’ perceived knowledge or skills related to Soft-
ware Engineering that is acquired or enhanced during the program. The collaborative, interdiscipli-
nary framework, in itself, already provided an authentic and realistic experience for students within
which practical knowledge of software engineering practices can be acquired. In this discussion, the
results on knowledge/skill acquired are synthesized to verify whether the insights or skills acquired
are relevant to their future profession as software engineers. To do this, the discussion is framed
around Lethbridge’s (2000) Knowledge Gaps.

Lethbridge (2000) highlighted three forms of Knowledge Gaps. First, the Educational Knowledge
Gap. This knowledge gap refers to the difference between the amount of knowledge learned in edu-
cation and the particular knowledge’s importance in the industry. Second is the On-the-Job Learning
Gap. This refers to the knowledge areas that might not have been emphasized in class but learned in
the profession instead. And third, the Current Knowledge Gap. This knowledge gap refers to the
knowledge areas that are deficient at the time of study but are deemed necessary to software engi-
neering. Because this case study’s objective was to reinforce classroom learning through an interdisci-
plinary approach to project development, the students’ responses were summarized according to the
last two forms of knowledge gaps.

Table 13 matches the students’ responses to the knowledge areas that are typically learned On-the-
Job (Lethbridge, 2000). The analysis is focused on Software Engineering Methods and Essential Sub-
system Design categories as these are the target knowledge areas for the interdisciplinary program.

Table 13. Attributed Learning after Education

Category Topics Learned on the Job (or
forgotten since education)

Insights/Skills Ac-
quired according to

Students’ Responses?
Remarks

Software Engi-
neering Methods

Requirements gathering and analyses

Analysis and Design methods
Testing, Verification and Quality Assur-
ance

Software Reliability and Fault Tolerance Evidenced in software
produced

Maintenance, Reengineering, and Re-
verse Engineering Not introduced

Essential Subsys-
tem Design

Human-computer interaction/user inter-
faces

Databases

It was noted that majority of the perceived knowledge/skills acquired during the program are the
same knowledge/skills acquired by some software engineers on-the-job.

Table 14, on the other hand, matches the students’ responses to the knowledge areas that are rec-
ommended as additional employee training because it may be lacking or missing in the software engi-

Vicente, Tan, & Yu

149

neer professional. The top 10 topics with the greatest knowledge gap according to Lethbridge are
utilized in the synthesis. Based on Table 14, it is remarkable that the students learned Negotiation and
Leadership early on in their studies.

Table 14. Attributed Learning against Education Gap

Rank Topic
Insights/Skills Ac-
quired according to

Students’ Responses?
Remarks

1 Negotiation

2 Human-computer interaction/user
interfaces

3 Leadership

4 Real-time System Design

5 Management Observed in Management team
members

6 Software Cost Estimation Observed in Management team
members

7 Software Metrics

8 Software Reliability and Fault Tol-
erance Evidenced in software produced

9 Ethics and Professionalism Observed in quality of product and
presentation

10 Requirements gathering and anal-
yses

CONCLUSIONS AND RECOMMENDATIONS
This study presented a technique for integrating interdisciplinary approach to Software Engineering
Education. Literature review suggests that for a Software Engineering course, a collaborative ap-
proach through projects is advantageous (Chase et al., 2007; Chen & Chong, 2011; Flener, 2006; Gi-
raldo et al., 2010; Kirti et al., 2015). This case study advanced the current pedagogy by involving oth-
er related disciplines in the project framework. Specifically, the study integrated Business Manage-
ment and Product Design disciplines. As in previous researches involving collaboration, the findings
revealed that students generally appreciated the course intervention citing that the knowledge learned
during the program can be used in their future professions. In the context of Software Engineering
Education, this case study provides new evidence that the academe can still improve the delivery of
the course. This improvement is grounded on the Situated Learning and Learning-by-Doing theories
proposed by Lave (1988, as cited in Ellis, Demurjian & Naveda, 2009)).

Consistent with the work of Bowser and Richard (2006), this study proves that academics can easily
integrate interdisciplinary learning by applying it in a problem-solving (Nikitina, 2006), collaborative
environment. Several factors that can influence the success or failure of the integration are presented
in this paper as well.

Many other research related to Software Engineering Education can be made from this case study. It
is recommended that the interdisciplinary approach presented in this case be applied and studied fur-
ther in other universities. Moreover, it is interesting to know and eventually understand the interac-
tions between interdisciplinary team members in the conduct of Software Engineering practices
while working on their projects. More specifically, what creative tensions arise and how do the inter-
disciplinary teams handle the discourse. Ultimately, the proponents recommend a refinement and
elaboration of the elements of the interdisciplinary framework presented in this paper towards a
proposal of an integrated course module for Software Engineering Education.

Collaborative Approach in Software Engineering Education

150

ACKNOWLEDGMENTS
Our thanks to Cebu Port Authority and Cebu South Bus Terminal for their support and participation
in the program. Also, for the UP Cebu Technology Business Incubator (TBI) for their assistance.
The authors would also like to acknowledge the UP Cebu Office of Continuing Education and
Pahinungod (OCEP) for their financial support on this program.

REFERENCES
Beard, D. (2014). Learning from each other: An interdisciplinary approach to Software Engineering (Unpublished Honours

Degree Thesis). Australian National University, Australia.

Blaschke, L. M. (2012). Heutagogy and lifelong learning: A review of heutagogical practice and self-determined
learning. International Review of Research in Open and Distance Learning, 13(1), 56-71.
https://doi.org/10.19173/irrodl.v13i1.1076

Bower, M., & Richards, D. (2006). Collaborative learning: Some possibilities and limitations for students and
teachers. In L. Markauskaite, P. Goodyear, & P. Reimann (Eds.), Proceedings of the 23rd Annual Conference of
the Australasian Society for Computers in Learning in Tertiary Education: Who’s Learning? Whose Technology?, 1, 79-
89.

Capretz, L. F. (2003). Personality types in software engineering. International Journal of Human-Computer Studies,
58(2), 207-214. https://doi.org/10.1016/S1071-5819(02)00137-4

Cooper, M. (n.d.). One proven way to boost software quality: Increase your QA team’s diversity. TechBeacon. Retrieved
from https://techbeacon.com/improve-software-quality-qa-team-diversity

Chase, J. D., Oakes, E., & Ramsey, S. (2007). Using live projects without pain: The development of the small
project support center at Radford University. SIGCSE Bulletin, 39(1), 469-473.
https://doi.org/10.1145/1227504.1227468

Chen, C. & Chong, P. (2011). Software engineering education: A study on conducting collaborative senior pro-
ject development. Journal of Systems and Software, 84(3), 479-491. https://doi.org/10.1016/j.jss.2010.10.042

Ellis, H. J. C., Demurjian, S. A., & Naveda, J. F. (Eds.). (2009). Software engineering: Effective teaching and learning
approaches and practices. Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-60566-102-5

Felder, R., & Silverman, L. (1988). Learning and teaching styles in engineering education. Engineering Education,
78(7), 674-681.

Flener, P. (2006). Realism in project-based software engineering courses: Rewards, risks, and recommendations.
In 21st international conference on CIS, ISCIS’06, 1031-1039. Berlin, Heidelberg: Springer-Verlag.
https://doi.org/10.1007/11902140_107

Giabbanelli, P., Reid, A. & Dabbaghian, V. (2012). Interdisciplinary teaching and learning in computing science:
three years of experience in the MoCSSy program. Proceedings of the 17th Western Canadian Conference on Com-
puting Education, WCCCE 2012. https://doi.org/10.1145/2247569.2247586

Gannod, G. C, Burge, J. E., & Helmick, M. T. (2008). Using the inverted classroom to teach software engineer-
ing. Proceedings of the 30th International Conference on Software Engineering, 777–786.
https://doi.org/10.1145/1368088.1368198

Giraldo, F. D., Collazos, C. A., Ochoa, S. F., Zapata, S., & de Clunie, G. T. (2010). Teaching software engineering from
a collaborative perspective: Some Latin-American experiences. In 2010 Workshops on Database and Expert Systems
Applications, 97-101. https://doi.org/10.1109/DEXA.2010.39

Goldsmith, A., Hamilton, D., Hornsby, K., & Wells, D. (n.d.). Interdisciplinary approaches to teaching. In Peda-
gogy in Action: the SERC portal for Educators. Retrieved from
https://serc.carleton.edu/sp/library/interdisciplinary/interdisciplina.html

Gottschalk, P., & Solli-Sather, H. (2007). Knowledge transfer in IT outsourcing relationships: Three interna-
tional case studies. International Journal of Innovation and Learning, 4(2), 103-111.
https://doi.org/10.1504/IJIL.2007.011687

https://doi.org/10.19173/irrodl.v13i1.1076
https://doi.org/10.1016/S1071-5819(02)00137-4
https://techbeacon.com/improve-software-quality-qa-team-diversity
https://doi.org/10.1145/1227504.1227468
https://doi.org/10.1016/j.jss.2010.10.042
https://doi.org/10.4018/978-1-60566-102-5
https://doi.org/10.1007/11902140_107
https://doi.org/10.1145/2247569.2247586
https://doi.org/10.1145/1368088.1368198
https://doi.org/10.1109/DEXA.2010.39
https://serc.carleton.edu/sp/library/interdisciplinary/interdisciplina.html
https://doi.org/10.1504/IJIL.2007.011687

Vicente, Tan, & Yu

151

Jaccheri, L., & Sindre, G. (2007). Software engineering students meet interdisciplinary project work and art.
Proceedings of Information Visualization, 2007. IV ‘07. 11th International Conference, 925-934.
https://doi.org/10.1109/IV.2007.102

Kirti, G., Sureka, A., & Varma, V. (2015). A case study on teaching software engineering concepts using a case-
based learning environment. Proceedings from 1st International Workshop on Case Method for Computing Education
(CMCE) in conjunction with the 22nd Asia-Pacific Software Engineering Conference (APSEC 2015), New
Delhi, India.

Lethbridge, T. C. (2000). What knowledge is important to a software professional? Computer, 33(5), 44-50.
https://doi.org/10.1109/2.841783

Liang, T., Liu, C., Lin, T., & Lin, B. (2007). Effect of team diversity on software project performance. Industrial
Management & Data Systems, 107(5), 636-653. https://doi.org/10.1108/02635570710750408

McCuskey, D., & Conaway, W. (1955). The interdisciplinary approach. Educational Leadership, 12(7), 395-401.

Mead, N. R. (2015). Industry/university collaboration in software engineering education: Refreshing and retun-
ing our strategies. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 273-275.
https://doi.org/10.1109/ICSE.2015.156

Newell, W. H. (1994). Designing interdisciplinary courses. New Directions for Teaching and Learning, 58(58), 35–51.
https://doi.org/10.1002/tl.37219945804

Nikitina, S. (2006). Three strategies for interdisciplinary teaching: Contextualizing, conceptualizing, and prob-
lem-centering. Journal of Curriculum Studies, 38, 251-271. https://doi.org/10.1080/00220270500422632

Oches, R. (2012). Ethanol & Sustainability teaching: Integrating business, public policy and science [PowerPoint slides].
Retrieved from https://serc.carleton.edu/integrate/teaching_materials/interdisciplinary_format.html

O’Leary, M., & Azadegan, S. (2005). An interdisciplinary approach to scientific modeling and simulation. Sixth
International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
and First ACIS International Workshop on Self-Assembling Wireless Network, 372-377.
https://doi.org/10.1109/SNPD-SAWN.2005.17

Razmov, V. (2007) Effective pedagogical principles and practices in teaching software engineering through pro-
jects. 37th ASEE/IEEE Frontiers in Education Conference, Milwaukee, WI.

Reichlmayr, T. (2005). Enhancing the student project team experience with blended learning techniques. In
Frontiers in Education, 2005. FIE ‘05. Proceedings 35th Annual Conference, T4F.
https://doi.org/10.1109/FIE.2005.1611982

Rus, I., & Lindvall, M. (2002). Knowledge management in software engineering. In IEEE Software, 19(3), 26-38.
https://doi.org/10.1109/MS.2002.1003450

Silva, V. (2017, 3 July). Services, Tourism will still be CV’s economic drivers if... Cebu Daily News. Retrieved 16
January 2018 from http://cebudailynews.inquirer.net/138210/services-tourism-will-still-cvs-economic-
drivers

Stein, M. (2002). Using large vs. small group projects in capstone and software engineering courses. Journal of
Computing Sciences in Colleges, 17(4), 1-6.

Stettina, C. J., Zhou, Z., Bäck, T., & Katzy, B. (2013). Academic education of software engineering practices:
Towards planning and improving capstone courses based upon intensive coaching and team routines. 26th
International Conference on Software Engineering Education and Training (CSEE&T), 169-178.
https://doi.org/10.1109/CSEET.2013.6595248

The University of Sydney School of Education and Social Work. (2018). Collaborative learning. Retrieved from
http://sydney.edu.au/education_social_work/learning_teaching/ict/theory/collaborative_learning.shtml

Williams, K. Y., & O’Reilly, C. A. (1998). Demography and diversity in organizations: A review of 40 years of
research. Research in Organizational Behavior, 20, 77-140.

Wong, W. B. L., McGuire, M., & McDonald, J. (1996). An interdisciplinary approach to multimedia systems
education: the Otago experience. Proceedings 1996 International Conference Software Engineering: Education and
Practice, 394-399. https://doi.org/10.1109/SEEP.1996.534026

https://doi.org/10.1109/IV.2007.102
https://doi.org/10.1109/2.841783
https://doi.org/10.1108/02635570710750408
https://doi.org/10.1109/ICSE.2015.156
https://doi.org/10.1002/tl.37219945804
https://doi.org/10.1080/00220270500422632
https://serc.carleton.edu/integrate/teaching_materials/interdisciplinary_format.html
https://doi.org/10.1109/SNPD-SAWN.2005.17
https://doi.org/10.1109/FIE.2005.1611982
https://doi.org/10.1109/MS.2002.1003450
http://cebudailynews.inquirer.net/138210/services-tourism-will-still-cvs-economic-drivers
http://cebudailynews.inquirer.net/138210/services-tourism-will-still-cvs-economic-drivers
https://doi.org/10.1109/CSEET.2013.6595248
http://sydney.edu.au/education_social_work/learning_teaching/ict/theory/collaborative_learning.shtml
https://doi.org/10.1109/SEEP.1996.534026

Collaborative Approach in Software Engineering Education

152

Yin, R. K. (2009). Case study research: Design and methods. Thousand Oaks, CA, USA: SAGE Publications.

BIOGRAPHIES
Aileen Joan Vicente is an Assistant Professor at the Department of
Computer Science, University of the Philippines Cebu. She received her
Master’s Degree in Information Management from Ateneo de Manila
University in 2008. Her research interests include Data Mining, Data Ana-
lytics, Natural Language Processing and Computer Science Education.
She has been teaching Software Engineering to undergraduate Computer
Science students for the past 15 years. She worked as a software develop-
er for a local garments industry before she joined the academe in 2002.
Even in the academe, she was assigned administrative tasks involving sys-

tems development and management for academe-specific information systems.

Tiffany Adelaine Tan is Assistant Professor (7) and Dean of the School
of Management with a specialization in Services Marketing and Manage-
ment at the University of the Philippines Cebu. Her teaching areas are in
general management, organizational behavior, marketing management,
branding, brand asset management, advertising, and services market-
ing. She received her Ph.D. in Business Administration from University
of the Philippines Diliman in 2013. Most of her research centers on im-
proving the knowledge, performance, and evaluation of the hospitality
industry in the Philippines, i.e., hotels and restaurants. Her primary re-

search interests are organizational commitment behavior, services failure and recovery, and customer
satisfaction. Seven of her articles have been accepted for publication in peer-reviewed local and in-
ternational journals. Before joining the academe, she was in the sales and marketing profession and
then became a trainer and consultant.

Alvin Ray Yu is an Instructor of the Department of Computer Science
at the University of the Philippines Cebu. He finished his Bachelor of
Science in Information Technology degree at the University of San Car-
los. He had five years of experience in the IT industry as software engi-
neer, spearheading automation initiatives, developing niche software, and
mobile applications before joining the academe. He is currently taking up
his Master’s Degree in Computer Science in the University of the Philip-
pines Cebu.

	Collaborative Approach in Software Engineering Education: An Interdisciplinary Case
	Abstract
	Introduction
	Literature Review
	Collaborative Approach in Software Engineering Education
	Interdisciplinary Approach in Software Engineering Education
	Why Interdisciplinary Approach Is Timely and Relevant
	Research Objectives

	Methods
	Methodology
	Research Context
	Interdisciplinary, collaborative framework
	Project selection
	Product development and closing

	Data Collection and Analysis

	Results
	Program Assessment Results
	Peer Evaluation Results
	Software Engineering Evaluation Results

	Discussion
	Program Reception
	Factors that Influence Teams and Project Success
	Positive factors
	Negative Factors

	Knowledge and Skill Acquisition

	Conclusions and Recommendations
	Acknowledgments
	References
	Biographies

