

Volume 22, 2023

Accepting Editor Stamatis Papadakis │Received: April 28 2023│ Revised: July 14, July 25, August 13, 2023 │
Accepted: August 14, 2023.
Cite as: Chaparro Amaya, E. J., Restrepo-Calle, F., & Ramírez-Echeverry, J. J. (2023). Discovering insights in
learning analytics through a mixed-methods framework: Application to computer programming education. Jour-
nal of Information Technology Education: Research, 22, 339-372. https://doi.org/10.28945/5182

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

DISCOVERING INSIGHTS IN LEARNING ANALYTICS
THROUGH A MIXED-METHODS FRAMEWORK:
APPLICATION TO COMPUTER PROGRAMMING

EDUCATION
Edna Johanna Chaparro Amaya Universidad Nacional de Colombia,

Bogotá, Colombia
edchaparroa@unal.edu.co

Felipe Restrepo-Calle* Universidad Nacional de Colombia,
Bogotá, Colombia

ferestrepoca@unal.edu.co

Jhon J. Ramírez-Echeverry Universidad Nacional de Colombia,
Bogotá, Colombia

jjramireze@unal.edu.co

* Corresponding author

ABSTRACT
Aim/Purpose This article proposes a framework based on a sequential explanatory mixed-

methods design in the learning analytics domain to enhance the models used to
support the success of the learning process and the learner. The framework
consists of three main phases: (1) quantitative data analysis; (2) qualitative data
analysis; and (3) integration and discussion of results. Furthermore, we illus-
trated the application of this framework by examining the relationships between
learning process metrics and academic performance in the subject of Computer
Programming coupled with content analysis of the responses to a students’ per-
ception questionnaire of their learning experiences in this subject.

Background There is a prevalence of quantitative research designs in learning analytics,
which limits the understanding of students’ learning processes. This is due to
the abundance and ease of collection of quantitative data in virtual environ-
ments and learning management systems compared to qualitative data.

Methodology This study uses a mixed-methods, non-experimental, research design. The quan-
titative phase of the framework aims to analyze the data to identify behaviors,
trends, and relationships between measures using correlation or regression anal-
ysis. On the other hand, the qualitative phase of the framework focuses on con-
ducting a content analysis of the qualitative data. This framework was applied to

https://doi.org/10.28945/5182
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:edchaparroa@unal.edu.co
mailto:ferestrepoca@unal.edu.co
mailto:jjramireze@unal.edu.co

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

340

historical quantitative and qualitative data from students’ use of an automated
feedback and evaluation platform for programming exercises in a programming
course at the National University of Colombia during 2019 and 2020. The re-
search question of this study is: How can mixed-methods research applied to
learning analytics generate a better understanding of the relationships between
the variables generated throughout the learning process and the academic per-
formance of students in the subject of Computer Programming?

Contribution The main contribution of this work is the proposal of a mixed-methods learn-
ing analytics framework applicable to computer programming courses, which al-
lows for complementing, corroborating, or refuting quantitatively evidenced re-
sults with qualitative data and generating hypotheses about possible causes or
explanations for student behavior. In addition, the results provide a better un-
derstanding of the learning processes in the Computer Programming course at
the National University of Colombia.

Findings A framework based on sequential explanatory mixed-methods design in the
field of learning analytics has been proposed to improve the models used to
support the success of the learning process and the learner. The answer to the
research question posed corresponds to that the mixed methods effectively
complement quantitative and qualitative data. From the analysis of the data of
the application of the framework, it appears that the qualitative data, represent-
ing the perceptions of the students, generally supported and extended the quan-
titative data. The consistency between the two phases allowed us to generate hy-
potheses about the possible causes of student behavior and provide a better un-
derstanding of the learning processes in the course.

Recommendations
for Practitioners

We suggest implementing the proposed mixed-methods learning analytics
framework in various educational contexts and populations. By doing so, practi-
tioners can gather more diverse data and insights, which can lead to a better un-
derstanding of learning processes in different settings and with different groups
of learners.

Recommendations
for Researchers

Researchers can use the proposed approach in their learning analytics projects,
usually based exclusively on quantitative data analysis, to complement their re-
sults, find explanations for their students’ behaviors, and understand learning
processes in depth thanks to the information provided by the complementary
analysis of qualitative data.

Impact on Society The prevalence of exclusively quantitative research designs in learning analytics
can limit our understanding of students’ learning processes. Instead, the mixed-
methods approach we propose suggests a more comprehensive approach to
learning analytics that includes qualitative data, which can provide deeper in-
sight into students’ learning experiences and processes. Ultimately, this can lead
to more effective interventions and improvements in teaching and learning
practices.

Future Research Potential lines of research to continue the work on mixed-method learning ana-
lytics methodology include the following: first, implementing the framework on
a different population sample, such as students from other universities or other
knowledge areas; second, using techniques to correct unbalanced data sets in
learning analytics studies; third, analyzing student interactions with the auto-
mated grading platform and their academic activities in relation with their activ-
ity grades; last, using the findings to design interventions that positively impact
academic performance and evaluating the impact statistically through

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

341

experimental study designs. In the context of introductory programming educa-
tion, AI/large language models have the potential to revolutionize teaching by
enhancing the learning experience, providing personalized support, and ena-
bling more efficient assessment and feedback mechanisms. Future research in
this area is to implement the proposed framework on data from an introductory
programming course using these models.

Keywords learning analytics, mixed methods, computer programming, correlation analysis,
content analysis

INTRODUCTION
The past few decades have seen an increase in the use of technology in education, including comput-
ers, electronic boards, virtual environments, and learning management systems. As a result, the
amount of data collected during the learning process has increased exponentially, providing potential
insights into the factors that contribute to academic success (Baker & Inventado, 2014; Siemens,
2013). This information can guide institutions, faculty, and students in making decisions related to
educational administration, teaching, and learning (Kumar et al., 2015; Lazarinis et al., 2022), as well
as learning outcomes assessment (Ladias et al., 2022). Learning analytics, which involves the analysis
of educational data, is considered the future of education, particularly in higher education contexts
(Arnold & Pistilli, 2012; Long & Siemens, 2011). Learning analytics builds on traditional educational
research principles, and leverages innovations such as new forms of digital data collection and ad-
vanced computational analysis techniques from data science and artificial intelligence (Pistilli et al.,
2014).

In the context of computer programming courses, learning analytics has been used for various pur-
poses, such as detecting students at risk of failing a course (Azcona et al., 2019; Lagus et al., 2018),
tracking course progress (Shen et al., 2020), and providing personalized feedback to students (Lu et
al., 2017). The importance of incorporating learning analytics into computer programming education
stems from the inherent complexity of programming tasks (Salguero et al., 2021). For example, stu-
dents must develop problem-solving skills to tackle complex tasks such as understanding the prob-
lem at hand, translating the problem statement into an algorithm using techniques such as pseudo-
code or flowcharts, manually calculating the output using specific input data, implementing the pro-
gram based on the designed algorithm, compiling the program, and identifying and correcting any
syntax errors or bugs (Aissa et al., 2020). In addition, computer programming courses often face the
challenge of maintaining student interest in the field (Margulieux et al., 2020) and ensuring that stu-
dents acquire the expected knowledge as perceived by their instructors (Salguero et al., 2021). There-
fore, having tools and techniques that can help improve the learning design and facilitate student pro-
ficiency is of great value (Shen et al., 2020).

However, research by Mangaroska and Giannakos (2017) suggests that quantitative research designs
still predominate over mixed methods and qualitative studies in learning analytics. This finding is con-
sistent with those of Macfadyen and Dawson (2010) and Tempelaar et al. (2016), who highlight the
limitations of using quantitative data as the sole source of information to understand students’ learn-
ing processes. This problem arises due to the abundance, greater availability, and ease of collection
of quantitative data in virtual environments and learning management systems compared to qualita-
tive data (Mangaroska & Giannakos, 2017).

Thus, in this work, we propose a framework based on a sequential explanatory mixed-methods de-
sign in the learning analytics domain to enhance the models used to support the success of the learn-
ing process and the learner. The framework consists of three main phases: (1) quantitative data analy-
sis; (2) qualitative data analysis; and (3) integration and discussion of the results. Furthermore, we ap-
ply this framework by examining the relationships between learning process metrics and academic

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

342

performance in the subject of Computer Programming coupled with a questionnaire on students’
perceptions of their learning experiences in this subject. We propose to answer the research question:

How can mixed-methods research applied to learning analytics generate a better understanding
of the relationships between the variables generated throughout the learning process and the
academic performance of students in the subject of Computer Programming?

The proposed methodological design for this study is non-experimental and uses a mixed approach.
The quantitative phase of the research aims to determine the relationships between the calculated
metrics of the learning process and the academic performance of students in the subject of Com-
puter Programming. On the other hand, the qualitative phase of the methodology focuses on the
content analysis of the qualitative data obtained from a questionnaire in which students expressed
their learning experiences in the subject.

This document is structured as follows. The second section provides a description of the conceptual
framework and related work on learning analytics, both in general and in the context of computer
programming courses. The third section explains the methodological framework of learning analytics
based on mixed methods proposed in this research. The fourth and fifth sections describe the prepa-
ration, transformation, and analysis of quantitative and qualitative data, respectively. The sixth section
presents a discussion of the results, integrating the quantitative and qualitative analysis. Finally, the
last section presents the conclusions and future work derived from this research.

BACKGROUND AND RELATED WORKS

LEARNING ANALYTICS
Learning analytics is a multidisciplinary field that studies different aspects of education across differ-
ent contexts. While it is not the aim to provide an exhaustive review of the extensive literature on the
topic, several key aspects can be highlighted. These include academic performance, student retention,
motivation (Lonn et al., 2015), engagement (Coffrin et al., 2014), learning gains, satisfaction (Elia et
al., 2019), metacognitive skills (Wu & Wu, 2018), and self-regulated learning ability, which is deter-
mined by analyzing individual records of academic performance, interactions with course content,
and personal information (Kizilcec et al., 2017). Researchers have proposed various models for data
analysis and the development of personalized feedback systems (Arnold & Pistilli, 2012), as well as
predictive models to identify at-risk students (Monllaó Olivé et al., 2020). Other researchers, such as
Andergassen et al. (2014), and Barber and Sharkey (2012), have investigated potential relationships
between learning outcomes, student use of the course learning management system (LMS), and de-
mographic information.

LEARNING ANALYTICS IN COMPUTER PROGRAMMING COURSES
The proposed methodological framework of this work aims to apply learning analytics using a mixed
research approach in a computer programming course. In the field of computer science, learning an-
alytics has gained significant importance. Specifically, in computer programming courses, researchers
are actively exploring ways to predict student behavior and provide personalized feedback. For in-
stance, Azcona et al. (2019) proposed a model to identify students at risk of failing a Python pro-
gramming course and provide personalized feedback. Shen et al. (2020) used a heat map to visualize
student engagement with educational resources and activities in an introductory Python MOOC, ex-
amining access patterns and identifying similarities and differences. Lu et al. (2017) applied learning
analytics to identify students in need of immediate intervention in a Python MOOC, allowing in-
structors to create adaptive learning guides based on the information gathered. Macfadyen and Daw-
son (2010) analyzed the usage tracking data from an LMS used in a course with Blackboard-Vista,
while Vahdat et al. (2015) aimed to understand the behavior of systems and computer engineering
students in a course using a circuit simulator. Additionally, researchers have also conducted several

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

343

studies to identify the variables of the learning process that correlate with students’ academic perfor-
mance. For example, Zacharis (2015) developed a model to predict students at risk of low perfor-
mance using data collected from the Moodle platform.

RELATED WORKS
Researchers have proposed several methodological frameworks for applying learning analytics in edu-
cational research. Clow’s (2012) cyclical model is a closed loop that compares the investigation’s re-
sults with a reference point, such as previous data or expected results and design interventions that
modify the same learning process studied. Aljohani et al. (2019) proposed a framework that adapts
learning analytics applications to the specific requirements of the course, divided into instructional,
data, analytical, and presentation levels. Carter et al. (2019) proposed a cyclical process consisting of
observable behaviors’ operationalization, data collection, data analysis, intervention design, and inter-
vention implementation. Ihantola et al. (2015) established an architecture of the systems and subsys-
tems present in learning analytics research applied in computer science courses. Siemens (2013) pro-
posed a generalizable architecture that uses a top-down approach to systematize the educational re-
sources used.

Despite the progress in learning analytics, there are still several challenges in this field. One of the
main challenges is the over-reliance on quantitative methods in research, as opposed to qualitative or
mixed methods (Mangaroska & Giannakos, 2017; Tempelaar et al., 2016). Moreover, with the recent
shift towards semi-face-to-face or fully virtual classrooms, learning analytics applications based exclu-
sively on quantitative methods face difficulties in comprehending learning processes entirely (Kop et
al., 2017; Rienties & Toetenel, 2016). To address this limitation, high-quality educational information
is needed to inform decision-making on the generation and implementation of educational interven-
tions (Hilliger et al., 2020).

MIXED METHODOLOGICAL DESIGN FOR LEARNING ANALYTICS
The proposed methodological framework aims to apply learning analytics using a mixed research ap-
proach. The research design is non-experimental as the data have been collected without modifying
the variables of the context. The proposed design for educational research is complemented by a
mixed methods research approach, and an explanatory sequential type of study is suggested for this
type of research (Bryman, 2015; Creswell, 2014). The explanatory sequential methodology uses the
results found with qualitative methods to find a likely explanation for the findings found by quantita-
tive methods.

Figure 1 illustrates the proposed methodological framework, which consists of three sequential
global phases: (1) quantitative data, (2) qualitative data, and (3) discussion. The first two phases are
divided into three stages, which are represented in the figure by the dotted black lines. These stages
correspond to data preparation, data transformation, and data analysis. The quantitative analysis
(Phase 1) is consistent with existing research in learning analytics, which has traditionally focused on
quantitative analysis. While the specific approach in Phase 1 may have some novel aspects, it is based
on established practices of data collection and analysis in the field of learning analytics. In contrast,
the qualitative analysis (Phase 2) and the discussion of the results of both quantitative and qualitative
analyses (Phase 3) can be seen as novel contributions of this research. The literature review indicated
that the inclusion of qualitative analysis in learning analytics is an emerging area with limited existing
research. Therefore, the inclusion of Phases 2 and 3 in the proposed framework adds value by ad-
dressing this gap and providing new insights into the learning analytics process. Each of the activities
in the proposed methodology is described in detail below.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

344

Figure 1. Proposed methodological framework

for learning analytics through a mixed-methods research approach

PHASE 1: QUANTITATIVE DATA
In this phase, quantitative data related to students’ interactions in the course and their academic per-
formances are collected from the learning platform. This data includes information such as the num-
ber of times students accessed the platform, the time spent on each activity, the number of attempts
made, and the scores obtained.

This phase begins with the data collection, where the location and format of the available data is identi-
fied. Then, the data on the students’ learning process is gathered using a data management and analy-
sis tool. The next step is dataset consolidation, which is necessary because raw data is often disaggre-
gated. During this stage, the most appropriate data structures are identified for the organization and
manipulation of the consolidated data.

After consolidation, dataset cleaning is performed to identify variables that provide useful information
about the learning process. Variables that are not related to the objective of the study or those with
data quality issues are discarded. The identification of variables follows, where a literature review of
measurements and metrics used in educational research in the field of the target course is conducted.
The measurements found in the literature that are present in the dataset are then identified, and ap-
propriate metrics are built using them.

Next, metrics design is performed, where the equations needed for the estimation of metrics are estab-
lished based on the results found in the literature. At this point, it is necessary to define the scale
(nominal, ordinal, interval, ratio) for the metrics and units of measurement when appropriate. The
equations proposed in the metrics design stage are then applied in the data management tool, and the
values obtained are stored for later analysis (metrics calculation). Exploratory data analysis is then per-
formed based on the previous measurements and metrics to identify behaviors and trends. Descrip-
tive statistics, such as the arithmetic mean, dispersion measures, skewness, and visualizations like box
plots, histograms, etc., are used during this stage.

Finally, data analysis and modeling techniques are applied, and the relationships between metrics and meas-
urements are identified through correlation or regression analysis. In addition, supervised or

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

345

unsupervised machine learning techniques can be applied if the goal of the work is to obtain classifi-
cations, regressions, or clustering of data.

PHASE 2: QUALITATIVE DATA
To begin this activity, the research design for the qualitative methodology needs to be selected, such
as grounded theory, ethnographic study, narrative, phenomenological, or action-participatory re-
search (Hernández-Sampieri et al., 2014). Then, the population sample of interest should be identi-
fied, and the research method for the study (data collection tools), such as interviews, questionnaires,
focus groups, etc., should be selected. All collected data should be stored in a defined location, such
as a local storage or a shared file storage platform. The format of the stored files should also be de-
termined, depending on the data source, whether it is text, image, video, or audio files.

The next step is dataset consolidation. In this activity, all the collected data is stored in a defined loca-
tion, and the format of the data set is made uniform. After that, the dataset cleaning consists of remov-
ing data from the dataset; in the case of records identified as having data that is missing, incomplete,
atypical, or irrelevant, it should be removed. In addition, if the amount of data is large, computa-
tional tools such as Atlas.ti, Decision Explorer, Etnograph, and NVivo may be used.

The content analysis of qualitative data begins with the theme exploration. This activity starts the pro-
cess of content analysis of qualitative data, which is represented by the blue box in Figure 1. Content
analysis is defined by Bryman (2015) as the systematic and reproducible quantification of documents
and texts, both printed and visual, in terms of predetermined categories. This is a nonlinear and iter-
ative process, as the tasks of coding and categorizing are not single events within the procedure (Her-
nández-Sampieri et al., 2014). The basic unit of analysis or meaning is chosen, and the information
collected is divided into specific fragments labeled with codes that emerge from the interpretation of
the data.

The process of open coding involves dividing the data into small fragments and labeling them with ap-
propriate codes that indicate global ideas. Similar codes are grouped and labeled with the same code
to ensure that segments related to the same topic are categorized accurately.

The axial coding identifies connections between the codes generated in open coding and groups them
into categories (Corbin & Strauss, 1990). From these categories, associations are identified, such as
causal relationships, context behind observations, or consequences of the phenomenon, and catego-
ries can be grouped into general themes.

Finally, selective coding identifies the central phenomenon or category that unifies all other categories
and themes resulting from previous coding (Corbin & Strauss, 1990). This process, also known as
data relativization, may refine some codes and result in the creation, mixing, splitting, or elimination
of labels. The step-by-step approach to data relativization is as follows (Corbin & Strauss, 1990):

1. Based on the trends identified in the data, define the central category that groups all the
themes and categories of the axial coding and captures the general idea of the qualitative re-
search results.

2. Identify the links between the general category and the rest of the themes and categories to
determine the final narrative of the research report.

3. Identify the themes, categories, and codes that appear to be unrelated to the central phenom-
enon identified and verify whether the amount of data from these labels is sufficient to con-
sider the results relevant. In the case that the information is insufficient, the label should be
eliminated.

4. Review the original data again and code the fragments of information considering the gen-
eral category generated.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

346

PHASE 3: DISCUSSION
As the proposed methodological design follows a sequential explanatory mixed methods approach,
this phase consolidates the findings of the quantitative phase with those of the qualitative phase. The
aim is to explain the findings of the first phase using those of the second phase, which helps to ver-
ify whether the behaviors identified through quantitative data are supported or refuted by qualitative
data (integration of phases stage). This approach broadens the scope of the results of the quantitative
phase and generates clarifications of the behaviors found from a qualitative perspective.

The stage of interpretation involves a detailed analysis of the research questions and their answers
based on the specific results obtained. The results are then compared with the findings of related
works that were studied in the literature review. In cases where the results differ from the existing lit-
erature, the possible reasons for such discrepancies should be stated, including factors that may be
related to the dataset, the course characteristics, and the context, among others.

Finally, the hypothesis generation begins with an in-depth analysis of the results obtained, which includes
a detailed description of the possible reasons for the identified behaviors. This approach helps to for-
mulate hypotheses that describe aspects of learning processes that may occur in the educational envi-
ronment under study. Based on these hypotheses, it is essential to reflect on how the research find-
ings contribute to the scientific community, particularly in the field of learning analytics. These find-
ings can guide future research projects and work.

PROPOSAL APPLICATION: QUANTITATIVE DATA
The proposed methodological framework for learning analytics using a mixed-methods research ap-
proach is intended to be applied in the context of computer programming courses using educational
platforms that facilitate the collection and storage of data on student interactions. The selection of
computer programming courses as the context for the case study is primarily intended to demon-
strate the practical application of the proposed methodology in a real-world setting. However, it is
important to note that the methodology itself can be applied to other domains within the field of
learning analytics.

This study analyzes the use of the UNCode platform, an educational platform used in the Computer
Programming courses at the National University of Colombia for the automatic evaluation of pro-
gramming exercises (Restrepo-Calle et al., 2018, 2020). The research question of this proposal appli-
cation is:

How can mixed-methods research applied to learning analytics generate a better understanding
of the relationships between the variables generated throughout the learning process and the
academic performance of students in the subject of Computer Programming?

The study considers two sources of information: (1) the record of students’ interactions with the
UNCode platform, stored in a MongoDB database, and (2) questionnaires on students’ perceptions
about the use of the educational platform, stored in spreadsheets by academic period.

UNCode allows students to submit multiple attempts (source code or Jupyter notebooks) to solve
programming tasks. For each solution attempt, the platform stores the program file, submission date,
and time. It also provides automatic feedback through verdicts related to syntax, semantics, and pro-
gram efficiency, as well as a numerical grading based on the test cases the program solved. UNCode
provides several learners’ support tools, such as syntax highlighting, code auto-completion, Linter
(suggestions for good programming practices), visualization of code execution, custom tests, and
grade reports. Further details on the functionalities of UNCode can be found in Restrepo-Calle et al.
(2018).

In the context of the computer programming course, the objective of Phase I is to collect and ana-
lyze quantitative data from the students’ interactions with the educational platform and their

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

347

corresponding academic performance, as well as quantitative data from the students’ perception
questionnaires. The collected quantitative data will provide a rich source of information that can help
identify relationships, evaluate performance, plan interventions, and improve the computer program-
ming course for better student outcomes.

DATA PREPARATION

Interaction with UNCode
The study population consisted of students who took the subject of Computer Programming at the
National University of Colombia between the first academic period of 2019 and the second period
of 2020 (2 years - 4 academic semesters), during which the UNCode educational platform was used
in the course activities. The study is limited to 24 computer programming courses that used the UN-
Code platform to support mandatory academic assignments. The total number of students in these
groups was 772. The platform was available throughout the study period. The data collection process is
performed to select the 16 collections in the database. The selected collections are Aggregations, An-
alytics, Students Grades, Submissions, Tasks, User Tasks, and Users. The data was then organized
into individual folders for each course, which contain the following files:

1. Students: This file contains a list of users identified with the student role.
2. Analytics: Information about the use of UNCode tools by users is stored here. The follow-

ing five tools are available:
a. Custom input: This tool enables the design and running of custom tests to evaluate the

built programs.
b. Python tutor: This tool allows visualization of the execution flow of the designed pro-

gram step by step.
c. Multiple languages code: This option enables the evaluation of source code written in

different programming languages, such as C/C++, Java, and Python.
d. Linter: A highlighting tool that identifies errors and provides recommendations in the

source code based on principles of good programming practices.
e. User statistics: This file contains statistical reports on the grades obtained by each stu-

dent.
3. UNCode_grades: This file contains the final grades assigned to each student that corre-

sponds to the weighted average of the grades obtained from the activities performed within
the platform.

4. Submissions: This file contains a record of the solution attempts sent by the students in the
course activities. Each solution attempt is specified by the date and time of submission, the
activity identifier, the username, and the course identifier. Additionally, the file contains the
identifier of the file sent, the numerical grade on a scale from 0 to 100, the tests performed,
and the verdict obtained.

5. Input: This file contains the specifications of the files sent by each student in each solution
attempt. The columns correspond to the file identifier (index), the name of the file loaded
on the platform (file_name), and the programming language used (language).

6. Tasks: This file contains information about the course activities developed within the plat-
form. Each file has a column with the course identifier (course_id) and the activity identifier
(task_id).

7. User_tasks: This file summarizes the number of attempts made by each student in the
course activities.

For the data consolidation, each course folder contains a directory containing all the files submitted by
the students in each solution attempt. These files are organized into directories per student, which
contain subdirectories for each course activity.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

348

Regarding the data cleaning stage, first, a filter was applied to select computer programming courses
with a high number of activities on the platform. The courses G15-2019-2 and G16-2019-2 have the
maximum number of activities, 102. In contrast, G8-2020-1 has the least number of activities, only
15. All courses have sufficient interaction data recorded. However, the pilot courses group-5 and
group-6 are discarded, as the platform was used for preliminary study, making their data incompara-
ble to the other courses. Therefore, 22 groups are considered in the final dataset.

Secondly, activities with a low number of submissions are filtered out, using a minimum limit of 15
submissions per activity. Activities with low or no submissions possibly correspond to tests of UN-
Code operation or optional activities, making the data irrelevant. This filter eliminated 49 activities
out of 1404 from the dataset. Activities with notebook-type files are discarded as they are not com-
parable with source code files submitted in other activities. Three such activities were identified in the
course G18_2020_1, reducing the total number of activities in the dataset to 1352.

Subsequently, a student filter is applied based on the total number of submissions registered per stu-
dent. Some students have few or no submissions registered, indicating early withdrawal. Using the
same minimum limit of 15 submissions, 37 students with less than the minimum number of submis-
sions were identified and excluded from the dataset. After this process, the resulting dataset con-
tained data from a total of 735 students.

Perception questionnaires
Moreover, during the same period (from the first semester of 2019 to the second semester of 2020),
we conducted a questionnaire-based approach to gather students’ perceptions of using UNCode in
the Computer Programming courses. The questionnaires were administered to 17 of the 24 course
groups, and the responses were stored in spreadsheets by academic period. Although not all course
groups participated in the questionnaires due to logistical inconveniences due to instructors’ deci-
sions, the representativeness of the selected course groups provides the perceptions of participants
from the majority of the groups. Therefore, this fact might not have introduced any potential bias or
limitation to the results. The questionnaires were administered before students learned their final
grades during week 14 of the course (out of 16 weeks). In addition, the questionnaire was adminis-
tered via Google Forms, which ensured a convenient and accessible method of data collection. The
questionnaires also asked for informed consent from the participants, ensuring ethical considerations
in the administration process.

The questionnaire data include demographic information about the students and their responses to
questions about their use of the platform. However, only closed-ended questions were considered in
this phase, as they provide quantitative data. The questions were presented as statements, and stu-
dents were asked to answer using a Likert scale from 1 to 6. The statements were as follows:

1. Indicate your level of agreement or disagreement regarding the following statements, with a
maximum value of 6 indicating the highest level of agreement and a value of 1 representing
the highest level of disagreement:

a. UNCode was useful in their computer programming learning process.
b. UNCode was helpful in obtaining automatic grading for the programs you developed in

this subject.
c. The automatic feedback provided by UNCode was useful to know how to correct er-

rors in my programs.
2. Rate the following UNCode features according to how useful you think they are for learning

computer programming, with a maximum level of 6 indicating the highest level of useful-
ness and a value of 1 representing the least level of usefulness:

a. Testing of programs using user-supplied inputs (custom input).
b. Programming best practices verification tool (Linter).
c. Visualization of program execution (Python Tutor).
d. Performance reports (statistics).

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

349

The questionnaire responses on perception are compiled into one file that combines the information
from all the courses. Using a Colab notebook, each spreadsheet is converted into a Pandas Data-
Frame, and then these DataFrames are concatenated into one, which includes the columns with the
student’s username, date of birth, gender, academic program, and course group (course_id). Further-
more, the responses to the closed-ended perception questions are also included.

To clean the consolidated data gathered from the perception questionnaires on the use of UNCode, ini-
tially, the dataset is filtered to remove students with insufficient information. This filtering eliminates
33 students, resulting in a final set of 349 students who participated in the perception questionnaire.
This number represents 47.5% of the 735 students from the collected dataset with the interaction
with UNCode. Next, a filter is applied to the closed-ended questions of the questionnaire, which are
answered on a Likert scale. The questionnaire comprises 21 such questions, but 14 are discarded as
they have responses from less than 25% of the total number of participants. As a result, only seven
of the closed-ended questions are considered in the final dataset, as mentioned above.

DATA TRANSFORMATION
Table 1 lists the 15 measurements that are of interest in this research from the students’ interaction
with UNCode (identification of variables). These are classified into four categories:

1. Submissions: data related to the attempts made by each student to solve programming as-
signments.

2. Verdicts: data related to the feedback received for each solution attempt.
3. Tool usage: data on the number of times each platform tool is accessed.
4. Academic performance: numerical grading of the submissions made by the students.

Moreover, software metrics of the students’ programs are obtained from the source code files sub-
mitted as solutions to the programming tasks.

Table 2 presents the 13 measures identified in the dataset obtained from the perception question-
naires (identification of variables). These measures are classified into two categories:

1. Demographic data: includes information that characterizes the student sample.
2. Closed-ended questions: include responses on a Likert scale regarding the use of the plat-

form and its tools during the course activities.

Based on the measures identified in Table 1 and Table 2, 25 metrics were developed and categorized
as follows (metrics design):

1. Verdict rates: These represent the ratio of a specific type of verdict to the total number of
verdicts obtained by each student. The equations used to calculate them are specified in Ta-
ble 3.

2. Tool usage rates: This category refers to the percentage of accesses to a specific tool in rela-
tion to the total number of accesses registered for all tools available on the platform per stu-
dent. The equations used to calculate tool usage rates are also specified in Table 3.

3. Software metrics: This category represents specific characteristics of the source codes cre-
ated by students. Table 4 describes the metrics and equations used to calculate them, which
are based on the number of operands, operators, executable lines of code, and reserved
words used in the code built as a solution to the course activities. These software metrics
were calculated using the specialized Python libraries. The lizard library is used to quantify
lines of code (NLOC) and token count. The radon library is applied to calculate the cy-
clomatic complexity (G), maintainability index (MI), and Halstead metrics. Subsequently, the
average of the metrics of all the files submitted by each student was estimated.

4. Demographic data: Besides the measures related to demographic data from Table 2, this cat-
egory includes students’ age, which is calculated based on their date of birth recorded in the
questionnaires and the date of completion.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

350

It is worth noting that the first two categories of verdict rates and tool usage rates are aimed at iden-
tifying the most and least used verdicts and tools, respectively.

Table 1. Measurements considered in the dataset from interaction with UNCode

CATEGORY MEASUREMENT DESCRIPTION SCALE UNITS

Submissions
Total_Submissions Number of attempts submitted per student. Ratio Count

Duration_of_Submission Average time spent by students between sub-
mission attempts.

Ratio Minutes

Verdicts

Accepted Number of solutions with correct answers. Ratio Count

Wrong_Answer Number of solutions with incorrect answers. Ratio Count

Compilation_Error Number of submitted attempts that fail to
compile.

Ratio Count

Runtime_Error Number of attempts that succeed in compil-
ing but fail during execution.

Ratio Count

Time_Limit_Exceeded Number of attempts that take too long to ex-
ecute.

Ratio Count

Memory_Limit_Exceeded Number of attempts that exceed the memory
available for execution.

Ratio Count

Output_Limit_Exceeded Number of attempts that exceed the ex-
pected program output size.

Ratio Count

Tool usage

Python_Tutot
Number of logged accesses to the Python tu-
tor tool that allows visualization step-by-step
execution of a program.

Ratio Count

Custom_Input
Number of registered accesses to the Custom
input tool where students perform custom
tests on their programs.

Ratio Count

Linter
Number of registered accesses to the Linter
tool, which highlights syntax and style prob-
lems in the source code.

Ratio Count

User_Statistics
Number of registered accesses to the interac-
tive dashboard to report on students’ individ-
ual statistics.

Ratio Count

Multiple_Languages_Code
Number of accesses to the Multiple Lan-
guages tool that allows submission in differ-
ent programming languages.

Ratio Count

Academic
performance uncode_grade Weighted average of grades of the activities

performed by students in UNCode.
Ratio Per-

centage

Table 2. Measurements considered in the dataset from the perception questionnaires
CATEGORY MEASUREMENT DESCRIPTION SCALE

Demographic
data

Birthdate Day, month, and year of the student’s birth. Date

Sex Variable that represents the sex of the student Nominal

Academic program Corresponds to the student’s university career, with 15 options
available.

Nominal

Closed-ended
questions

QUESTION: Learning
process

Level of agreement or disagreement in Likert scale of the student
with the statement: “UNCode was useful in their computer pro-
gramming learning process”.

Ordinal

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

351

CATEGORY MEASUREMENT DESCRIPTION SCALE

QUESTION: Automatic
grading

Level of agreement or disagreement in Likert scale of the student
with the statement: “UNCode was helpful in obtaining automatic
grading for the programs you developed in this subject.”.

Ordinal

QUESTION: Feedback
Level of agreement or disagreement in Likert scale of the student
with the statement: “The automatic feedback provided by UN-
Code was useful to know how to correct errors in my programs”.

Ordinal

A_Custom_input
Likert-scale response to the statement: “Rate the following UN-
Code features according to how useful you think they are for
learning computer programming:”, regarding testing of programs
using user-supplied inputs (custom input).

Ordinal

A_Linter
Likert scale response to the statement: “Please rate the following
UNCode features according to how useful you think they are for
learning computer programming:”, regarding the programming
best practices verification tool (Linter).

Ordinal

A_PythonTutor
Likert-scale response to the statement: “Rate the following UN-
Code features according to how useful you think they are for
learning computer programming:”, regarding the visualization of
program execution (Python Tutor).

Ordinal

A_Statistics
Likert scale response to the statement: “Rate the following UN-
Code features according to how useful you think they are for
learning computer programming:”, regarding performance re-
ports (statistics).

Ordinal

Table 3. Metrics based on the verdicts and tool usage measures
CATE-
GORY METRIC EQUATION SCALE UNITS

Verdicts
rates

Success_rate
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100

Ratio Percentage

Error_rate_Wrong_Answer
𝑊𝑊𝑉𝑉𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Error_rate_Compilation_Error
𝐶𝐶𝑊𝑊𝐶𝐶𝐴𝐴𝑉𝑉𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉𝑊𝑊𝑊𝑊𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Error_rate_Runtime_Error
𝑅𝑅𝑅𝑅𝑊𝑊𝐴𝐴𝑉𝑉𝐶𝐶𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Error_rate_Time_Limit_Exceeded
𝑇𝑇𝑉𝑉𝐶𝐶𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴

∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100

Ratio Percentage

Error_rate_Memory_Limit_Exceeded
𝑀𝑀𝐴𝐴𝐶𝐶𝑊𝑊𝑉𝑉𝑀𝑀𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Error_rate_Output_Limit_Exceeded
𝑂𝑂𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Tool
usage
rates

Python_Tutor_rate
𝑃𝑃𝑀𝑀𝐴𝐴ℎ𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐴𝐴
∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Custom_input_rate
𝐶𝐶𝑅𝑅𝑠𝑠𝐴𝐴𝑊𝑊𝐶𝐶𝑖𝑖𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇

∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100

Ratio Percentage

Linter_rate
𝐿𝐿𝑉𝑉𝑊𝑊𝐴𝐴𝐴𝐴𝑉𝑉
∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

User_Statistics_rate
𝑈𝑈𝑠𝑠𝐴𝐴𝑉𝑉𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝐴𝐴𝑇𝑇𝑖𝑖𝑆𝑆𝐴𝐴
∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100
Ratio Percentage

Multiple_Languages_Code_rate
𝑀𝑀𝑅𝑅𝐶𝐶𝐴𝐴𝑉𝑉𝐴𝐴𝐶𝐶𝐴𝐴𝐿𝐿𝑆𝑆𝐴𝐴𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿𝐴𝐴

∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100

Ratio Percentage

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

352

Table 4. Software metrics from source code files submitted by students

CATEGORY METRIC DESCRIPTION/EQUATION SCALE UNITS

Software
metrics

Lines of code (NLOC) Number of lines of code excluding com-
ments

Ratio Count

Tokens_count Number of tokens of the programming lan-
guage used in the code.

Ratio Count

Cyclomatic complexity (G) Number of decision blocks contained in the
code, plus one. Lower is better.

Ratio Count

Program vocabulary (n)
𝑊𝑊 = 𝑊𝑊1 + 𝑊𝑊2

𝑊𝑊1: The number of distinct operators.
𝑊𝑊2: The number of distinct operands

Ratio Count

Program length (N)
𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2

𝑁𝑁1: The total number of operators
𝑁𝑁2: The total number of operands

Ratio Count

Calculated program length (L) 𝐿𝐿 = 𝑊𝑊1 ∙ 𝐶𝐶𝑊𝑊𝑊𝑊2(𝑊𝑊1) + 𝑊𝑊2 ∙ 𝐶𝐶𝑊𝑊𝑊𝑊2(𝑊𝑊2) Ratio Decimal

Volume (V) 𝑉𝑉 = 𝑁𝑁 ∙ 𝐶𝐶𝑊𝑊𝑊𝑊2(𝑊𝑊)
(Acceptable range between 20 and 1000)

Ratio Decimal

Difficulty (D) 𝐷𝐷 = 𝐴𝐴1
2
∙ 𝑁𝑁2
𝐴𝐴2

 (Lower is better) Ratio Decimal

Effort (E) 𝐸𝐸 = 𝐷𝐷 ∙ 𝑉𝑉 (Lower is better) Ratio Decimal

Time required to program (T) 𝑇𝑇 = 𝐸𝐸 18⁄ (Lower is better) Ratio Minutes

Number of delivered bugs (B) 𝐵𝐵 = 𝑉𝑉 3000⁄ (Lower is better) Ratio Decimal

Maintainability index (MI) Measure of how easy to support and change
the source code is (0-100). Higher is better.

Ratio Decimal

DATA ANALYSIS AND RESULTS
This section summarizes the results of the exploratory data analysis (univariate analysis) of some of the
measures and metrics considered in the dataset. For the total number of submissions made by the
students (Figure 2), the average is 176.6 submissions with a standard deviation of 120.8. The stand-
ard deviation value corresponds to more than 68% of the average, indicating a high dispersion of the
data, which may suggest that students use different techniques in problem-solving. Some students
may make many submissions with small changes in each attempt, while others may make extensive
modifications resulting in fewer attempts on the platform.

The tool usage (Figure 3) shows that the most used tool is “Custom_input” with 65.0% of the total
recorded accesses, indicating that most students prefer to test the effectiveness of their programs
with self-designed tests. The usage rates of “Python_Tutor” and “Multiple_Languages_Code” are
17.7% and 12.0%, respectively. The use of “Python_Tutor” indicates that some students find it help-
ful to observe the step-by-step execution flow of the constructed program, possibly for error loca-
tion. On the other hand, the use of “Multiple_Languages_Code” reflects the proportion of student
interactions related to code submissions in one of the supported programming languages. The least
used tools are “Linter” (5.1%) and “User Statistics” (0.5%). The low use of these tools may indicate
that students consider the information provided by these tools insufficient to help them improve
their constructed solutions.

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

353

Figure 2. Exploratory Data Analysis: Total submissions box plots by group

Figure 3. Exploratory Data Analysis: Tools usage

Regarding the verdicts obtained (Figure 4), the judgment with the highest number of records is
“wrong answer” (48.9%). This result indicates that most students are successful in designing executa-
ble solutions but struggle to meet the specific objectives of the activities. The second verdict with a
high number of records is “correct answer” (31.7%), indicating that many students are able to apply
the knowledge of the course in solving programming problems. The verdicts that follow in magni-
tude are “execution error” (14.6%) and “time limit exceeded” (3.9%). The sum of the verdicts ob-
taining less than 1.0% – “compilation error,” “memory limit exceeded,” and “result limit exceeded” –
represents less than 20% of the recorded judgments, indicating that few students have difficulties or
doubts specifically in the executable program design process.

After analyzing the descriptive statistics derived from the software metrics calculated based on the
programs constructed by the students, we observed a high degree of dispersion in the data, as indi-
cated by the standard deviations, which are greater than the average in several cases. The metrics with
the highest degree of data dispersion are the effort and time required to program, with deviations of
1603.8 and 89.1, respectively. This suggests a wide variety of solutions constructed by the students.
On the other hand, the metrics with lower data dispersion are maintainability index (6.4) and diffi-
culty (1.3), corresponding to 10.5% and 35.1% of their respective averages. The low dispersion of
these metrics possibly indicates that the students in this course possess similar capabilities and abili-
ties for program construction. These results are consistent with the fact that Computer Programming
is an introductory course, and for many students, this is their first exposure to programming lan-
guages.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

354

Figure 4. Exploratory Data Analysis: Verdicts obtained in the submissions

Furthermore, a correlation analysis was conducted with UNCode_grade as the dependent variable.
Firstly, the Shapiro-Wilks normality test was performed on the academic performance data to deter-
mine the appropriate statistical test for calculating the correlations. The test resulted in a p-value >
0.05, indicating that normality cannot be assumed in the data. Therefore, Spearman’s correlation co-
efficient was used as it does not require the samples to be normally distributed. Sex and Academic
program variables were not considered in the analysis, as Spearman’s coefficient is used to quantify
correlations between non-categorical variables. Figure 5 shows the 29 measures and metrics that have
a statistically significant correlation (p-value ≤ 0.05) with academic performance.

Figure 5. Variables with significant correlations with respect to academic performance

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

355

The variable with the highest positive correlation is “Accepted,” with a coefficient of 0.41. This is ex-
pected, as students who answer more questions correctly are typically more successful at solving
course exercises. The next two variables in order of magnitude are “Learning Process” and “Auto-
matic Grading,” with coefficients of 0.26 and 0.25, respectively. These results make sense, as students
who find the platform useful for learning and appreciate the benefits of automatic grading are more
likely to effectively use platform tools and improve their programming skills.

The variable “Success_rate” also has a positive correlation of 0.22, which is expected as students
who answer a high percentage of assignments correctly demonstrate strong programming skills.
Next, the positive correlations of “Total_Submissions” and “Custom_Input_rate” both with a corre-
lation coefficient of 0.21. In the first case, this may indicate that some students submit many solu-
tions until they get the correct one. In the second case, a student who is able to perform custom tests
is likely more knowledgeable about programming and can construct and correct programs more ef-
fectively.

In contrast, the variables with the highest negative correlation are the number of accesses to
“Linter,” “Multiple_Languages_Code,” “Linter_rate,” and “Multiple_Languages_Code_rate,” with
values between -0.3 and -0.23. These negative correlations are unexpected, as these tools are designed
to support the learning process of students.

The academic performance values were categorized into two groups: passing students (approved),
with final grades equal to or higher than 3.0, and students who did not pass the subject (failed). This
categorization was done to identify whether the correlations between measures and metrics changed
between high-performing and low-performing students. Figure 6 presents the significant correlations
(p-value ≤ 0.05) for both categories of students.

Focusing on the variables that turned out to be significant in both categories, we observed that six
variables had positive correlation coefficients, while one variable had a negative correlation. The posi-
tive correlations were found in the variables Accepted, Success_rate, Time_Limit_Exceeded, To-
tal_Submissions, Wrong_Answer, and Error_rate_Time_Limit_Exceeded.

In all cases, the positive correlations were stronger in the group of students who did not pass the
course. Moreover, the variable with a negative correlation shared by both groups of students was the
Error_rate_Runtime, which was higher in the case of failed students.

At this point in the research, after completion of the Phase I application, it is worth noting that rely-
ing solely on quantitative data may leave researchers with unanswered questions and gaps in their un-
derstanding of the research problem. For example, what are the underlying reasons for some of the
relationships identified? Therefore, in the proposed mixed-methods framework for learning analytics,
we emphasize the importance of incorporating qualitative analysis (Phase II) and discussion of the
results (Phase III) to address the research questions more comprehensively.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

356

Figure 6. Variables with significant correlations with respect to the academic performance of

students discriminated by academic performance (approved and failed)

PROPOSAL APPLICATION: QUALITATIVE DATA
During the qualitative analysis phase, the focus shifts to analyzing qualitative data collected from stu-
dents’ experiences in the computer programming course. Qualitative data may include responses
from questionnaires, interviews, or open-ended questions that capture students’ perceptions, feed-
back, and subjective experiences. The methods and analysis of qualitative data seek to find possible
explanations for the findings of quantitative methods. The goal is to explain the findings of the first
phase with the findings of the second phase, which helps to verify whether the behaviors identified
by the quantitative data are confirmed or refuted by the qualitative data. This approach broadens the
scope of the results of the quantitative phase and generates clarifications of the behaviors found
from a qualitative perspective. By incorporating the qualitative dimension, educators can gain richer
insights into students’ perspectives, which can inform targeted interventions and improvements in
the computer programming course.

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

357

DATA PREPARATION
In the quantitative phase, the sample of participants was defined as a subset of the data set from 17
out of 24 Computer Programming courses, covering the period from the second semester of 2019 to
the second academic period of 2020 (the Collection stage). Perception questionnaires were conducted
among students on the use of UNCode in the subject, using Google Forms, and the responses were
stored in a spreadsheet for each semester. Only the answers to the open-ended questions of the
questionnaire were used in this phase, as they were qualitative in nature. The open questions asked
students to explain the reasons behind their agreement or disagreement with the statements of the
closed questions considered in the quantitative phase (Table 2). The responses collected from the
spreadsheet files were grouped and coded by subject matter to homogenize the data set (Consolidation
and Cleaning stages). The final data set contains responses from 349 students who participated in the
perception questionnaire. The responses were related to open questions on the usefulness of the
UNCode platform to enhance learning in computer programming (named ANSWER: Learning pro-
cess), automatic grading (named ANSWER: Automatic grading), and feedback (named ANSWER:
Feedback). The textual answers provided by students in response to each of these three open ques-
tions are identified as the basic unit of analysis.

DATA TRANSFORMATION
The stage of theme exploration begins the process of content analysis of the qualitative data. This anal-
ysis was carried out with the support of the NVivo computational tool. A preliminary review of the
basic units of analysis was carried out, identifying recurrent, preconceived, and/or emerging themes.

For the open coding stage, the first level of content analysis coding involves assigning one or more
codes and categories to each basic unit of analysis. Keep in mind that the open and axial coding pro-
cess is not a strictly sequential process, and the generation of codes and categories may overlap with
the identification of general themes. Additionally, some units may lack detail, and thus only be placed
in general themes without category or code. For each of the three questions, the identified categories
and codes are listed and described below.

Learning process question
Regarding the learning process question, we generated a total of 5 themes, 21 categories, and 15
codes related to the usefulness of the platform in students’ learning process. Table 5 specifies the
number of units of analysis grouped by code, category, and general theme, which are classified by
students’ academic performance. The columns “approved”, and “failed” refer to the grouping of re-
sponses from the categories previously made during the correlation analysis according to the aca-
demic performance of the students. In this way, the column “approved” refers to the number of re-
sponses from students who successfully completed the programming course, “failed” represents the
number of responses from students who did not meet the requirements of the course, and “total”
indicates the total number of responses from students independently of their academic performance.
The total sum of references in the table does not correspond to the total number of responses con-
sidered, as each basic unit of analysis may be labeled with more than one code, category, or theme.
The following categories and codes were assigned:

1. Test cases: References from students highlighting that test cases integrated in the platform
help to obtain feedback on the submitted program and identify errors.

2. Formative tips: Mentions of the usefulness of the formative feedback offered by the plat-
form, which provides suggestions about the code construction process in terms of syntax,
semantics, efficiency, and maintainability aspects.

3. Knowing the errors: References on how the platform feedback allows students to identify
specific errors in the programs built, facilitating the correction and refinement process of
the designed solution.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

358

4. Online availability: Benefit for students of the platform working through a web browser, as
opposed to programs running in local environments, generating a learning environment
where the knowledge acquired can be tested outside the classroom space.

5. Workspace: Platform offers a specific space for the organization of activities, work, and de-
velopments made in the course, as a positive aspect.

6. Ease of use: Perceptions about the simplicity of the platform’s operation, including the con-
venience of building and modifying programs directly from the platform.

7. Programming languages: References to UNCode’s functionality for selecting various pro-
gramming languages such as Python, C++, and Java.

8. Constant practice: Mentions of how the platform allows frequent exercise practice, allowing
students to strengthen and consolidate the knowledge acquired in class.

9. Custom input: Mentions to the tool that allows performing customized tests by the students.
10. Linter: References to the tool for highlighting syntactic errors and source code style.
11. Python Tutor: Tool integrated into the platform that allows step-by-step visualization of the

execution of the programs.
12. Autonomous learning: Mentions of how the platform allows students to expand their

knowledge and skills in programming without requiring the direct intervention of the
teacher or instructor.

13. Stimulating exercises: Category containing references where UNCode programming prob-
lems are characterized as exercises sufficiently demanding to test and strengthen acquired
skills and knowledge, without demotivating students due to the level of difficulty.

14. Optimized evaluation: Category assigned to the mentions on how the platform makes the
evaluation of the codes submitted by the students much simpler, faster, and more objective.
The following four codes are identified in this category: immediate grading, including opin-
ions highlighting the immediacy of the grading, offered by the platform, of the solutions
sent in the course activities; objective grading, which mentions the objectivity of the grading
obtained in the platform, since the subjectivity of a manual grader is avoided; problem and
exercise approach, including mentions on how the platform simplifies the construction of
exercises, facilitating the understanding of the context and instructions of the programming
problems posed; and submission of academic activities, grouping opinions on how the plat-
form simplifies the process of uploading and submitting solutions to the exercises.

15. Programming skills: Category that contains references on how the use of the platform fa-
vors the development of computer programming skills, which transcend from the technical
handling of programming tools or languages to relevant long-term skills. Among the skills
mentioned by the students, algorithmic thinking, and the understanding of programming
logic as a sequential and systematic process stand out.

16. Problem-solving: Category assigned to mentions the development of skills to find the de-
sired solution of computer programming exercises, by means of verification tests together
with the comparison of the solution obtained with expected results.

17. UNCode general failures: Category that contains the references about the problematic as-
pects of the platform that can interfere with the learning process of the students. The fol-
lowing codes are identified within this category (this enumeration is in accordance with the
one made in Table 5): (7) Inefficient grading: Reports on errors or inconsistencies between
the numerical rating obtained and the quality of the constructed program. (8) Failures in test
cases: Reports on the incorrect execution of the test cases of the exercises presented in the
platform, which does not allow students to obtain formative feedback in an effective man-
ner. (9) Tools unavailable: Perceptions about how failures in the functioning of the platform
tools, hinder the construction and correction of the code. (10) Incompatibility: Mentions of
incompatibility of programs developed in UNCode with other code verification platforms.
(11) Loss of information: Reports about occasional loss of information within the platform.
(12) Platform down: Opinions where the failure of the platform servers is identified as the
main inconvenience, preventing student access. (13) Registration: Perceptions about lack of

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

359

clarity and inconveniences in the registration process as a user to use the platform. (14) Pro-
cessing speed: Mentions about significant delays in the processing of the files uploaded by
the students to the platform. (15) Visualization: Reports on failures in the visualization inter-
face of both the executed program and the test cases, which do not allow the acquisition of
relevant information for the learning process.

18. Inflexibility of the validations: Category assigned mentions the excessive rigorousness of the
platform when validating the solutions built by the students. Specifically, it refers to cases
where the platform qualifies as incorrect some programs that meet the objective of the exer-
cise but have minor errors of form.

19. Failure in educational objective: Category containing perceptions that state that the platform
is not a meaningful tool for the process of learning and acquiring programming skills.

20. Insufficient feedback: Category assigned to mentions the insufficiency in objectivity and de-
tail of the platform feedback. In this sense, some students mention having a perspective of
UNCode as a confusing and unreliable tool.

21. Replaceable tool: Category containing references to the possibility of replacing UNCode’s
functionalities with other available tools or programs, which may even fulfill the platform’s
objectives more effectively.

Table 5. Number of units of analysis grouped by
codes, categories, and themes of the learning process question

THEME CATEGORY CODE
UNIT OF ANALYSIS

Approved Failed Total
Platform
Environment 13 1 14

Benefits of the
Platform

 6 0 6

Test cases 9 1 10

Formative tips
 21 0 21
Guides implementable
improvements 13 0 13

Knowing the errors 80 2 82

Online availability 8 1 9

Workspace 4 0 4

Ease of use
 32 0 32
Ease of writing and correcting
code 13 0 13

Programming languages 5 0 5

Constant practice 17 3 20

UNCode
Tools

 33 0 33

Custom input 30 1 31

Linter 29 0 29

Python Tutor 69 4 73

Pedagogical
Achievements

 1 0 1

Autonomous learning 13 0 13

Stimulating exercises 39 1 40

Optimized evaluation
 10 0 10

Immediate grading 22 0 22

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

360

THEME CATEGORY CODE
UNIT OF ANALYSIS

Approved Failed Total

Objective grading 15 0 15

Problem and exercise approach 15 0 15
Submission of academic
activities 26 5 31

Programming skills 30 2 32

Problem solving 66 1 67

Areas of
improvement
for
programming
learning

UNCode general failures

 45 0 45

Inefficient grading 4 0 4

Failures in test cases 5 0 5

Tools unavailable 6 1 7

Incompatibility 5 0 5

Loss of information 3 0 3

Platform down 14 2 16

Registration 0 1 1

Processing speed 5 2 7

Visualization 5 1 6

Inflexibility of the validations 13 2 15

Failure in educational objective 6 5 11

Insufficient feedback 10 1 11

Replaceable tool 1 1 2

Automatic grading question
A total of 4 themes, 8 categories, and 7 codes were generated in response to the question regarding
the platform’s usefulness for automatic grading of student solutions. Table 6 presents the number of
units of analysis grouped by code, category, and general topic, and classified by academic perfor-
mance. The following categories and codes were assigned:

1. Teacher Involvement: Category assigned to units where students recommend that teachers
be included in the platform use, specifically in the academic performance evaluation process.

2. Little use of the platform: Category assigned to a few units that report insufficient experi-
ence with the platform, as it is possible that few activities have been developed with UN-
Code in some groups.

3. Autonomous Learning: Category assigned to units that highlight the platform’s ability to
promote student learning with minimal intervention from the teacher or monitor. The defi-
nition of this category is homologous to that established in the question related to the learn-
ing process. However, differences are evident with respect to the identified codes, which al-
lows identifying a greater number of components that contribute to autonomous learning.
Firstly, a group of references is identified where it is stated that the use of the platform al-
lows students to self-assess their level of knowledge and skills in the subject, which are
grouped with the Code of Evaluation Skills. Secondly, there is Formative Feedback, which
refers to the provision of quality information to identify errors, improve, and evaluate the
quality of programs developed by students. Finally, there is Grade Tracking, where students
highlight UNCode tools that allow statistical control of the grades obtained during the se-
mester in the activities carried out.

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

361

4. Optimized evaluation: Category where references related to the characteristics and aspects
of the platform that allow for effective and appropriate evaluation of the solutions proposed
by students are grouped. The codes generated within the category correspond to Immediate
grading, Objective grading, and Immediate feedback.

5. Validation failures: Category assigned to comments that report errors in the validation pro-
cess of developed programs, as they are marked as wrong despite meeting exercise require-
ments. Some students specify that the grading and evaluation criteria applied by the platform
are too strict and inflexible, ignoring small writing errors and semantics, and resulting in
poor grades. These references are grouped with the code Inflexibility in checks.

6. General failures: Category assigned to responses where platform failures and problems are
highlighted during use. The definition of this category is similar to the UNCode general fail-
ure category in the question related to the learning process. However, the errors reported in
this question tend to be less specific.

7. Incomprehensible: References that highlight difficulties in clearly understanding the purpose
of automatic grading, specifically its functionality or the information it generates.

8. Insufficient Feedback: References that state that the information provided to students when
submitting a solution lacks content and explanation, which does not allow for a full under-
standing of the provided feedback.

Table 6. Number of units of analysis grouped by
codes, categories and themes of the automatic grading question

THEME CATEGORY CODE
UNIT OF ANALYSIS

Approved Failed Total

Implementation
difficulties

 3 0 3

Teacher involvement 3 0 3

Little use of the platform 2 0 2

Ease of use 5 0 5

Pedagogical
achievements

Autonomous learning

Evaluation of skills 7 0 7

Formative feedback 63 1 64

Grade Tracking 7 0 7

Optimized evaluation

 19 0 19

Immediate grading 73 2 75

Objective grading 71 6 77

Immediate feedback 22 1 23

Areas of
improvement for
automatic
grading

Validation failures
 20 0 20

Inflexibility in checks 20 3 23

General failures 12 0 12

Incomprehensible 3 0 3

Insufficient feedback 2 1 3

Feedback question
Regarding the question on the platform’s usefulness for providing automatic feedback on student so-
lutions, a total of 4 themes, 5 categories, and 3 codes were identified. Table 7 shows the number of
units of analysis grouped by code, category, and general theme, and classified by academic perfor-
mance. The categories and codes assigned were:

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

362

1. Hidden test cases: Units that highlight instances where the difference between the obtained
and expected results is not visible, making it difficult for students to identify errors.

2. Insufficient guidance: Units where it is highlighted that the feedback obtained is not suffi-
cient, since in some cases the information acquired does not allow to specifically identify er-
rors or the way to correct the program. Some causes of this include minor errors that go un-
noticed by the platform and lack of clarity in explanations and instructions. The conse-
quence implies an autonomous obligation in the process of correcting the developed pro-
grams by the students.

3. Comparison with expected outputs: Units that reference the usefulness of comparing the
output generated by the student’s program with the expected output to identify errors and
correction strategies.

4. Correcting errors: Units where students affirm that clear identification of errors in their
code is crucial to understanding the type of mistake made and the most appropriate correc-
tion strategies.

5. Specific feedback: Units where feedback generated by the platform is described as highly de-
tailed and specific, aiding in timely problem-solving in programming.

Table 7. Number of units of analysis grouped by
codes, categories, and themes of the feedback question

THEME CATEGORY CODE
UNIT OF ANALYSIS

Approved Failed Total
Clear initial
conditions 6 2 8

Areas of
improvement in
feedback

 2 0 1

Hidden test cases 12 0 12

Insufficient guidance 35 0 35

 Minor details 7 2 9

 Lack of clarity 47 3 50

 Autonomous error
identification 12 0 12

Problem solving

 157 0 157
Comparison with expected
outputs 33 2 35

Correcting errors 51 3 54

Specific feedback 60 2 62

Pointing out errors 89 3 92

During the axial coding stage, categories were grouped into general themes for each of the three ques-
tions, as can be seen from Tables 5 to 7 (first column). For the learning process question, five general
themes were generated including platform environment, benefits of the platform, UNCode tools,
pedagogical achievements, and areas for improvement. For the automatic grading question, four gen-
eral themes were generated including implementation difficulties, ease of use, pedagogical achieve-
ments, and areas for improvement. For the feedback question, four general themes were generated
including clear initial conditions, areas for improvement in feedback, problem-solving, and pointing
out errors. The categories with the highest number of records were identified for each general theme,
indicating areas where students had the most positive or negative perceptions of the platform. Over-
all, the findings suggest that the platform is useful for learning computer programming, but there are
areas for improvement in terms of teacher support, clarity of feedback, and the operation of the
platform.

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

363

DATA ANALYSIS AND RESULTS
Based on the results of the open and axial coding, the selective coding stage was carried out. First, it is
found that the UNCode toolset, especially Python tutor, Custom input, and Linter, is the practical
basis of the benefits of the platform. In other words, the strengths, and possibilities of UNCode that
contribute to the learning of computer programming are represented through the platform’s own
options. These benefits allow students to obtain pedagogical achievements that students believe are
achieved due to the use of UNCode. These pedagogical achievements can be divided into three
groups: development of programming skills, autonomous learning, and optimized evaluation.

There is a reciprocal association between the first two achievements. By promoting the development
of important programming skills, students acquire capabilities, knowledge, and confidence, which
fosters learning processes with little or no intervention from teachers and assistants. UNCode pro-
vides students with the means to enhance their programming abilities. The platform’s Python tutor
tool, for instance, offers a practical environment for practical coding by means of interactive visuali-
zations. This hands-on experience helps students improve their understanding of programming prin-
ciples and techniques. Additionally, autonomy in learning allows students to consolidate knowledge
such as logical thinking and program construction. By allowing students to independently explore
programming concepts and experiment with coding, the platform enables them to develop their
problem-solving skills and gain a deeper understanding of how to construct effective programs. The
third academic achievement relates to the optimization of the evaluation of the programs submitted
by students and is represented in two aspects: (1) the simplification of the process of submission of
course activities, and (2) the objectivity and speed in the grading of the solution submitted by the stu-
dent. The objective and immediate grading has become a distinctive feature of UNCode, providing
reliability and efficiency to the operation of the platform.

However, there are also aspects that could be improved, which can significantly affect and hinder the
student’s experience, deteriorating the overall perception and assessment of UNCode. General mal-
functions, such as platform crashes when there is a high volume of users connected concurrently, can
directly hinder participation in academic activities, affecting the optimization of evaluation, identified
as the platform’s benefit. Another aspect to improve is the perceived inadequacy of the guidance of-
fered by UNCode. The lack of information or clarity in the feedback can hinder or slow down the
processes of autonomous learning. In some cases, insufficient instruction may compromise students’
ability to solve programming problems as they do not obtain sufficient information to identify strate-
gies to solve errors. The third aspect to improve is the inflexibility in the validation process. If the
platform rates programs as erroneous despite meeting exercise requirements but having minor errors,
it can create a sense of failure among students. This perception of harsh grading may discourage
learners and undermine their confidence, even when they have made significant progress in their pro-
gramming skills. Improving these aspects can enhance the student experience and address potential
barriers to effective learning. Ensuring platform stability, providing clear and informative feedback,
and adopting a more flexible validation process that recognizes and acknowledges students’ efforts
would contribute to a more positive and supportive learning environment within UNCode.

Finally, a systematic comparison was made between the responses of those who approved (passed)
the course and those who did not (failed). This was aimed at evaluating the hypothesis about the ef-
fect of passing or failing the course on the perception of the use of UNCode. However, no differ-
ences attributable to belonging to either group were found in any of the themes, categories, or codes.
At first, it could be stated that the difference between groups is not evident, due to the imbalance in
the number of members of each group, but it can be observed that at the discursive level, there are
no substantial differences either. Therefore, it can be concluded that the perception and valuation of
the platform appear to be independent of the course outcome, suggesting that factors other than
course performance influence how students perceive and evaluate UNCode.

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

364

PROPOSAL APPLICATION: DISCUSSION

INTEGRATION OF PHASES
The integration of phases stage consisted of analyzing together significant correlations results presented
in the quantitative data analysis phase with content analysis results described in the qualitative data
analysis phase. The measures and metrics can be divided into five categories according to the type of
data they represent: obtained verdicts, solution attempts, tool usage, closed questions in the percep-
tion questionnaire, and software metrics.

The study found that the feedback generated by verdicts has a positive effect on students’ learning
process. Students obtained relevant information through verdicts that helped them know errors and
develop programming problem-solving skills and promote autonomous learning. They perceived the
UNCode platform as an objective and efficient tool for validating constructed programs. Positive
correlations between verdicts and academic performance can also be linked to other platforms’ bene-
fits, such as formative tips, constant practice, and ease of use. Regarding automatic grading, error
verdicts correlated with academic performance may be linked to some platform’s pedagogical
achievements such as objective grading, immediate grading, and formative and immediate feedback.

Areas of improvement identified in the qualitative phase include minor syntax details, lack of clarity
and insufficient guidance, malfunctioning, inflexibility, insufficient feedback, incomprehensible, and
validation failure. These categories are similar across different questions and are related to incorrect
responses due to minor formatting errors, incomplete or not useful verdicts, and visualization and
test case execution issues. Moreover, it is important to consider that these areas for improvement
identified through the qualitative analysis can inform the development of new metrics to be consid-
ered in the quantitative analysis of future studies that capture aspects that may influence or hinder
the user experience in a timely manner.

We also analyzed the relation between the number of solution attempts made by students and various
factors of the UNCode platform. The results showed a positive correlation between the total num-
ber of attempts made and the academic performance of students. This might be related to the plat-
form’s benefits identified by students such as the possibility to practice constantly, online availability,
stimulating exercises, workspace, and ease of use. Students who perceived UNCode as an easy-to-use
tool tended to use the platform actively by sending a high number of solutions. The platform’s con-
stant availability also generated an exclusive workspace for the student, which allowed for constant
practice of exercises even outside of class, resulting in a high number of registered attempts. How-
ever, the study also identified aspects that some students considered should be improved within the
platform, which negatively affected the number of solutions sent. For example, general failures, in-
flexibility of the validations, and insufficient feedback were identified as obstacles to sending solu-
tions. Incompatibility with programs developed in other external development environments meant
that students opted for external tools for program development, evaluation, and correction, and used
UNCode only to submit the final program, which limited the number of attempts registered in UN-
Code.

Regarding the tool usage and the correlation between it and students’ academic performance, seven
measures show a significant correlation with student performance, with custom input rate having a
positive correlation while the rest have a negative correlation. The rate of custom input usage might
be related to the references of custom input in the questionnaire; this indicates that students who
perceive the option to evaluate programs built with custom tests as a useful tool tend to prefer to use
this tool, as they have the skills to design tests to debug the proposed solution and obtain good aca-
demic performance. However, the negative correlation found for the other tools and academic per-
formance is opposed to results found in the qualitative analysis, where we found positive students'
perceptions with respect to UNCode tools, especially those related to Python tutor and Linter.

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

365

The quantitative phase of the study also shows that some students’ responses to the closed-ended
perception questions in the questionnaire have a significant positive correlation with their academic
performance. Specifically, the questions related to the usefulness of UNCode in the learning process,
automatic grading, and feedback all had positive correlations. The qualitative phase supports these
findings, as most students identified the positive aspects of the platform in their open-ended re-
sponses. In particular, more than half of the surveyed students recognized the benefits of using UN-
Code in programming learning, pedagogical achievements, and promoting problem-solving. The use
of custom input, identified as a tool in the learning process question, also had a significant positive
correlation with academic performance.

In the final analysis of the software metrics, the quantitative phase showed that three metrics – token
count, lines of code, and cyclomatic complexity – had a positive correlation with academic perfor-
mance, while the maintainability index (MI) had a negative correlation. It is possible that this positive
correlation is due to students who developed longer programs in terms of tokens, lines of code, and
the number of possible paths within the program execution. However, the findings from the qualita-
tive analysis did not provide such technical details in relation to software metrics, making it difficult
to integrate them with the quantitative results.

INTERPRETATION
The research question of this proposal application on how mixed research methods applied in learn-
ing analytics can enhance the understanding of the relationships between variables generated
throughout the learning process and the academic performance of students in computer program-
ming can be answered through the integrated results summarized below.

Our findings suggest that students’ academic performance is positively correlated with the number
of accepted programs (correct responses), success rate, the amount of exceeded memory limit er-
rors, compilation errors, verdicts, and exceeded time limit rates. Considering the perceptions about
the platform as a source of formative feedback, it is possible to conclude that these verdicts not only
permitted students to identify errors but also provided guidance for correcting the constructed pro-
gram, which generated problem-solving skills and autonomous learning. This indicates that students
possibly acquire sufficient knowledge to successfully solve course activities, which is reflected posi-
tively in academic performance. These results support previous research findings that the accumu-
lated percentage of correct exercises has a significant correlation coefficient of 0.67 with student aca-
demic performance (Azcona et al., 2019). Additionally, our study found that the positive correlation
of the number of incorrect responses (Wrong_Answer) might be related to test case references and
comparison with expected outputs, indicating that the use of standardized tests for automatic pro-
gram evaluation is effective as formative feedback, benefiting student academic performance.

Regarding the use of UNCode’s tools, despite the negative results found in the correlation analysis
regarding academic performance, these negative correlations are refuted by references in the ques-
tionnaire responses that identify Python tutor, custom input, and linter as contributing elements
within the platform and as benefits of the platform. These results are also in line with previous find-
ings of studies conducted by Restrepo-Calle et al. (2020) and Ramírez-Echeverry et al. (2022), where
students’ perceptions of UNCode’s use as a learning support platform were also analyzed. Within
these investigations, it is evident that students recognize the visualization tool of code execution (Py-
thon tutor) as an added value of the platform, which is associated with the identification and correc-
tion of errors. Additionally, students highlight the tools for verification of good programming prac-
tices (Linter) and tests with customized inputs (Custom input). Moreover, the use of user statistics
has a non-significant correlation, which is consistent with research conducted by Zacharis (2015), and
Macfadyen and Dawson (2010), where the number of accesses to the grading tool does not show a
significant correlation with the grade. This result can be related to a small percentage of responses
that indicate monitoring grades as part of their pedagogical achievements, suggesting that the

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

366

majority of students is not aware of monitoring their academic achievements and therefore has no
noticeable impact on the learning process.

Furthermore, the total number of attempts made by students has a positive correlation with their fi-
nal grade, which can be attributed to positive aspects perceived by students, such as stimulating exer-
cises, ease of use, constant practice, online availability, workspace, and platform environment. The
relationship between these results suggests that high-performing students may use the platform as a
source of feedback to improve their solutions by making multiple attempts at the same activity. The
platform provides a workspace that facilitates the presentation of academic activities, is user-friendly,
allows for the creation of stimulating exercises, and encourages constant practice since it is available
even outside the classroom. This result is consistent with Zacharis’ (2015) research, which found a
positive correlation (0.2 to 0.39) between the number of activities submitted during the course and
the final grade.

Moreover, the positive correlation of time between attempts can be associated with the group of stu-
dents who highlight the immediate feedback and the writing and correction aspect as positive charac-
teristics of UNCode. These results are consistent with the findings of Andergassen et al. (2014), who
obtained a positive correlation of 0.18 between the average time difference between repetitions (i.e.,
attempts) of exercises and the final exam grade. These results indicate that due to the speed of the
evaluation process on the platform, students with good academic performance possibly invest most
of their time in building and correcting the solution between each submission. Another of the results
obtained is the positive correlations of perceptions in the three closed questions (QUESTION:
Learning process, QUESTION: Automatic grading, and QUESTION: Feedback), which are corrob-
orated by the answers to the open questions, where most students identify pedagogical achievements
and the benefits of the platform. This probably indicates that users who have a positive experience
with the platform tend to identify and take advantage of its benefits, achieving good academic per-
formance.

Our findings of a positive correlation between academic performance and the cyclomatic complexity
metric contradict the results of Vahdat et al. (2015), which found a negative correlation between the
two variables. Furthermore, previous works in this context have shown no significant correlation be-
tween these variables (Castellanos et al., 2017). Therefore, it is necessary to further explore these rela-
tionships to improve our understanding of this situation.

The results of this research provide insights into how automatic formative feedback can be beneficial
to the learning process for students. Nevertheless, some students highlight that this type of feedback
needs to be complemented with instructor guidance to achieve their objectives. Furthermore, allow-
ing students to design personalized tests appears to be a useful approach for constructing correct so-
lutions. The study also found that high-scoring students tend to make the most attempts and use the
majority of their time correcting their programs. Additionally, it emphasizes the importance of en-
suring that students understand the platform’s utility in the class methodology to increase the likeli-
hood that they will take advantage of the tool and improve their academic performance.

In terms of answering the research question posed, the results obtained show that the use of mixed
methods allows the results of the quantitative phase to be complemented by observations from the
qualitative phase. In this sense, in most cases, the qualitative data, which correspond to the students’
perceptions, corroborate, and expand upon the results of the quantitative data. The agreement be-
tween the results of both phases allows for generating several hypotheses about the underlying rea-
sons for the observed behaviors and the learning processes of the students, which are based on both
quantitative and qualitative results. In other cases, the mixed approach reveals contradictions between
the results of both phases (e.g., results of tool use), which allows for identifying topics of interest be-
yond the scope of the research and generating new questions that can be addressed in future works.
In other words, the application of the framework presented in this paper demonstrated that a mixed

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

367

methods approach to understanding the study question was superior to the use of a quantitative
methodology alone.

Finally, it is worth noting that the application of the framework presented has some limitations, such
as an imbalance in the dataset used in both the quantitative and qualitative phases. Specifically, the
number of students with grades above the minimum passing grade is much higher than the number
of students who fail the course, which could affect the magnitude of the correlations obtained differ-
entiated by passing and failing categories. Moreover, there is a limitation associated with the high dis-
persion of the data on the total number of attempts made and the average time between attempts,
due to the variety of activities carried out in the different groups of the programming course. Some
instructors propose more hands-on workshops, reinforcement exercises, or projects with flexible
deadlines, while others focus on assessing students’ knowledge through short tests and exams, which
usually have a limited time frame. This means that the behaviors and strategies that students use dur-
ing their learning process can vary significantly depending on the type of activity they are exposed to.
Finally, the students provided suggestions for improving the formative feedback, which should be
considered to enhance the functionality and usability of the tool.

HYPOTHESIS GENERATION
Based on the integration of results from both phases of the mixed methods approach used in the
research and their interpretation, ideas for possible future work arise that can expand the discoveries
of the current study. Firstly, it is possible to hypothesize that UNCode as a course tool may have a
significant impact on the average final grades of students using the tool, particularly in a program-
ming course. A comparative analysis between students using the UNCode platform and those en-
rolled in a similar course where the platform is not used could validate this hypothesis. To investigate
this further, a quasi-experimental study design could be implemented with an experimental group
consisting of students who use the tool and a control group consisting of students who do not use
the tool.

On the other hand, the significant correlations evidenced can promote the design and execution of
educational interventions within the course, corresponding to the final stage of the cyclic learning
analytics methodology proposed by Carter et al. (2019). The development of interventions consists
of making decisions in the studied educational context, where information, guidance, or feedback is
shared with the students with the aim of positively influencing their behavior (Carter et al., 2019). In
this context, it is plausible to hypothesize that an intervention designed to increase the visibility of
error verdict descriptions, accompanied by additional instructions for error correction, could signifi-
cantly improve the perceptions of students who perceive the feedback they receive as insufficient.
Furthermore, suggesting the use of specific tools based on their functionality, such as recommending
the use of Python Tutor to address runtime execution errors, may effectively encourage students to
engage with platform tools, resulting in improved perceptions of the feedback process and possibly
even improved academic performance. The impact of these interventions can also be evaluated
through an experimental design that seeks statistical differences between a group that implements
one of the interventions and a control group.

In the context of introductory programming education, AI/large language models have the potential
to revolutionize teaching by enhancing the learning experience, providing personalized support, and
enabling more efficient assessment and feedback mechanisms. Future research in this area is to im-
plement the proposed framework on data from an introductory programming course using these
models.

CONCLUSIONS AND FUTURE WORKS
This article proposes a sequential explanatory mixed-methods design for learning analytics, consisting
of three main phases: (1) preparation, transformation, and analysis of quantitative data; (2) collection

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

368

and content analysis of qualitative data; and (3) integration of results from both phases and discus-
sion/interpretation of the findings. This framework was applied to historical quantitative and qualita-
tive data from students’ use of an automated feedback and evaluation platform for programming ex-
ercises in a programming course at the National University of Colombia. The answer to the research
question posed corresponds to the fact that the results obtained demonstrate that the mixed methods
effectively complement quantitative and qualitative data. Qualitative data, representing students’ per-
ceptions, generally support and extend the quantitative data. The consistency between the two phases
allows hypotheses to be generated about student behavior and learning processes based on both
types of data.

Specifically, the relationship between students’ use of the programming tool and their academic per-
formance was examined. Results indicate that students who expressed the highest level of agreement
with the tool’s usefulness for learning and who appreciated the ability to automatically evaluate their
programs and receive feedback (qualitative data) tended to have better academic performance (quan-
titative data). This suggests that the formative feedback allowed students to identify errors and pro-
vided guidance for correcting the constructed program, which generated problem-solving skills and
autonomous learning that enabled students to successfully complete course activities, which was pos-
itively reflected in academic performance. In addition, students who emphasized the benefits of the
tool (qualitative data) achieved better academic performance (quantitative data). First, they found it
valuable for identifying errors in their programs and providing corrective feedback. Second, the tool
gave them the opportunity to practice programming autonomously and develop their problem-solv-
ing skills. The exercises provided were found to be challenging and stimulating, which motivated the
students to learn and increased their curiosity. Students also appreciated the tool’s objective and im-
mediate grading system. All of this suggests that users who have a positive experience with the plat-
form are more likely to recognize and take advantage of its benefits and achieve good academic per-
formance.

The main contribution of this work is the proposed methodological framework for the application
of learning analytics in computer programming courses, which is based on mixed methods and speci-
fies activities from data collection, both quantitative and qualitative, to results integration and discus-
sion. It is worth noting that the methodological activities are described in a general manner, provid-
ing a reference for future research in similar contexts. The use of mixed methods allows for the com-
plementation, corroboration, or refutation of quantitatively evidenced results with qualitative data,
and the generation of hypotheses about possible causes or explanations of students’ behaviors. Spe-
cifically, the framework used in this approach helped to formulate hypotheses that describe different
aspects of the learning processes that occur in a computer programming educational environment.
Based on these hypotheses, several future research projects and works were proposed.

Although a limitation of the presented study is that the framework was only demonstrated in the
context of its use for learning computer programming, we suggest that future research implement
the proposed framework in different educational contexts and populations to strengthen the ob-
tained results, complement the proposed methodology, or address identified issues. Potential lines of
research to continue this work include (1) implementing the proposed mixed-method learning analyt-
ics methodology on a different population sample, such as students from other universities; (2) using
techniques to correct unbalanced data sets, such as fine-tuning algorithms, resampling, or random
over/under sampling in learning analytics studies; (3) analyzing students’ interactions with the UN-
Code platform and their academic activities, such as exams, quizzes, workshops, projects, and assign-
ments, in correlation with their activity grades rather than their final course grade; and (4) using the
findings on students’ behaviors and perceptions of the UNCode platform to design interventions
that positively affect their academic performance, with an experimental design to statistically evaluate
the effect.

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

369

REFERENCES
Aissa, M., Al-Kalbani, M., Al-Hatali, S., & BinTouq, A. (2020). Novice learning programming languages in

Omani higher education institution (Nizwa University) issues, challenges and solutions. In A. Al-Masri, &
Y. Al-Assaf (Eds.), Sustainable development and social responsibility, Volume 2 (pp. 143–148). Springer.
https://doi.org/10.1007/978-3-030-32902-0_18

Aljohani, N. R., Daud, A., Abbasi, R. A., Alowibdi, J. S., Basheri, M., & Aslam, M. A. (2019). An integrated
framework for course adapted student learning analytics dashboard. Computers in Human Behavior, 92, 679–
690. https://doi.org/10.1016/j.chb.2018.03.035

Andergassen, M., Mödritscher, F., & Neumann, G. (2014). Practice and repetition during exam preparation in
blended learning courses: Correlations with learning results. Journal of Learning Analytics, 1(1), 48–74.
https://doi.org/10.18608/jla.2014.11.4

Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student
success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267–270). Associ-
ation for Computing Machinery. https://doi.org/10.1145/2330601.2330666

Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2019). Detecting students-at-risk in computer programming classes
with learning analytics from students’ digital footprints. User Modeling and User-Adapted Interaction, 29, 759–
788. https://doi.org/10.1007/s11257-019-09234-7

Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. Larusson, R. White
(Eds.), Learning analytics (pp. 61–75). Springer. https://doi.org/10.1007/978-1-4614-3305-7_4

Barber, R., & Sharkey, M. (2012). Course correction: using analytics to predict course success. Proceedings of the
2nd International Conference on Learning Analytics and Knowledge (pp. 259–262). Association for Computing Ma-
chinery. https://doi.org/10.1145/2330601.2330664

Bryman, A. (2015). Mixed methods research: Combining quantitative and qualitative research. In A. Bryman,
Social research methods (pp. 634-660). Oxford University Press.

Carter, A., Hundhausen, C., & Olivares, D. (2019). Leveraging the integrated development environment for
learning analytics. In S. Fincher, & A. Robins (Eds.), The Cambridge handbook of computing education research
(pp. 679-706). Cambridge University Press. https://doi.org/10.1017/9781108654555.024

Castellanos, H., Restrepo-Calle, F., González, F. A., & Ramírez Echeverry, J. J. (2017, October). Understanding
the relationships between self-regulated learning and students source code in a computer programming
course. Proceedings of the IEEE Frontiers in Education Conference, Indianapolis, IN, USA, 1–9.
https://doi.org/10.1109/FIE.2017.8190467

Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. Proceedings of the 2nd International Con-
ference on Learning Analytics and Knowledge (pp. 134–138). Association for Computing Machinery.
https://doi.org/10.1145/2330601.2330636

Coffrin, C., Corrin, L., de Barba, P., & Kennedy, G. (2014). Visualizing patterns of student engagement and
performance in MOOCs. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge
(pp. 83–92). Association for Computing Machinery. https://doi.org/10.1145/2567574.2567586

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qual-
itative Sociology, 13, 3–21. https://doi.org/10.1007/BF00988593

Creswell, J. W. (2014). The selection of a research approach. In J. W. Creswell, Research design: Qualitative, quantita-
tive and mixed methods approaches (pp. 3-24). Sage Publications.

Elia, G., Solazzo, G., Lorenzo, G., & Passiante, G. (2019). Assessing learners’ satisfaction in collaborative online
courses through a big data approach. Computers in Human Behavior, 92, 589–599.
https://doi.org/10.1016/j.chb.2018.04.033

Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Proceso de la investigación cuali-
tativa [Qualitative research process]. In R. Hernández-Sampieri, C. Fernández-Collado, & P. Baptista-Lucio,
Metodología de la investigación (pp. 355-466). McGraw-Hill.

https://doi.org/10.1007/978-3-030-32902-0_18
https://doi.org/10.1016/j.chb.2018.03.035
https://doi.org/10.18608/jla.2014.11.4
https://doi.org/10.1145/2330601.2330666
https://doi.org/10.1007/s11257-019-09234-7
https://doi.org/10.1007/978-1-4614-3305-7_4
https://doi.org/10.1145/2330601.2330664
https://doi.org/10.1017/9781108654555.024
https://doi.org/10.1109/FIE.2017.8190467
https://doi.org/10.1145/2330601.2330636
https://doi.org/10.1145/2567574.2567586
https://doi.org/10.1007/BF00988593
https://doi.org/10.1016/j.chb.2018.04.033

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

370

Hilliger, I., Ortiz-Rojas, M., Pesántez-Cabrera, P., Scheihing, E., Tsai, Y.-S., Muñoz-Merino, P. J., Broos, T., Whi-
telock-Wainwright, A., & Pérez-Sanagustín, M. (2020). Identifying needs for learning analytics adoption in
Latin American universities: A mixed-methods approach. The Internet and Higher Education, 45, 100726.
https://doi.org/10.1016/j.iheduc.2020.100726

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Pe-
tersen, A., Rivers, K., Rubio, M. A., Sheard, J., Skupas, B., Spacco, J., Szabo, C., & Toll, D. (2015). Educa-
tional data mining and learning analytics in programming: Literature review and case studies. Proceedings of
the 2015 ITiCSE on Working Group Reports (pp. 41–63). Association for Computing Machinery.
https://doi.org/10.1145/2858796.2858798

Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner
behavior and goal attainment in Massive Open Online Courses. Computers & Education, 104, 18–33.
https://doi.org/10.1016/j.compedu.2016.10.001

Kop, R., Fournier, H., & Durand, G. (2017). A critical perspective on learning analytics and educational data
mining. In C. Lang, G. Siemens, A. F. Wise, & D. Gašević (Eds.), The handbook of learning analytics (pp. 319–
326). Society for Learning Analytics Research. https://doi.org/10.18608/hla17.027

Kumar, V. S., Kinshuk, Somasundaram, T. S., Boulanger, D., Seanosky, J., & Vilela, M. F. (2015). Big data learn-
ing analytics: A new perspective. In Kinshuk, & R. Huang (Eds.), Ubiquitous learning environments and technolo-
gies (pp. 139–158). Springer. https://doi.org/10.1007/978-3-662-44659-1_8

Ladias, A., Karvounidis, T., & Ladias, D. (2022). Forms of communications in scratch and the SOLO taxon-
omy. Advances in Mobile Learning Educational Research, 2(1), 234–245. https://doi.org/10.25082/AM-
LER.2022.01.007

Lagus, J., Longi, K., Klami, A., & Hellas, A. (2018). Transfer-learning methods in programming course outcome
prediction. ACM Transactions on Computing Education, 18(4), Article 19. https://doi.org/10.1145/3152714

Lazarinis, F., Karatrantou, A., Panagiotakopoulos, C., Daloukas, V., & Panagiotakopoulos, T. (2022). Strengthen-
ing the coding skills of teachers in a low dropout Python MOOC. Advances in Mobile Learning Educational
Research, 2(1), 187–200. https://doi.org/10.25082/AMLER.2022.01.003

Long, P., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review,
September/October, 31–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learn-
ing-and-education

Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning ana-
lytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90–97.
https://doi.org/10.1016/j.chb.2014.07.013

Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learning analytics for improv-
ing students engagement and learning outcomes in an MOOCs enabled collaborative programming course.
Interactive Learning Environments, 25(2), 220–234. https://doi.org/10.1080/10494820.2016.1278391

Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators:
A proof of concept. Computers & Education, 54(2), 588–599.
https://doi.org/10.1016/j.compedu.2009.09.008

Mangaroska, K., & Giannakos, M. (2017). Learning analytics for learning design: Towards evidence-driven deci-
sions to enhance learning. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín
(Eds.), Data driven approaches in digital education (pp. 428–433). Springer. https://doi.org/10.1007/978-3-319-
66610-5_38

Margulieux, L. E., Morrison, B. B., & Decker, A. (2020). Reducing withdrawal and failure rates in introductory
programming with subgoal labeled worked examples. International Journal of STEM Education, 7, Article 19.
https://doi.org/10.1186/s40594-020-00222-7

Monllaó Olivé, D., Huynh, D. Q., Reynolds, M., Dougiamas, M., & Wiese, D. (2020). A supervised learning
framework: Using assessment to identify students at risk of dropping out of a MOOC. Journal of Compu-
ting in Higher Education, 32, 9–26. https://doi.org/10.1007/s12528-019-09230-1

https://doi.org/10.1016/j.iheduc.2020.100726
https://doi.org/10.1145/2858796.2858798
https://doi.org/10.1016/j.compedu.2016.10.001
https://doi.org/10.18608/hla17.027
https://doi.org/10.1007/978-3-662-44659-1_8
https://doi.org/10.25082/AMLER.2022.01.007
https://doi.org/10.25082/AMLER.2022.01.007
https://doi.org/10.1145/3152714
https://doi.org/10.25082/AMLER.2022.01.003
https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
https://doi.org/10.1016/j.chb.2014.07.013
https://doi.org/10.1080/10494820.2016.1278391
https://doi.org/10.1016/j.compedu.2009.09.008
https://doi.org/10.1007/978-3-319-66610-5_38
https://doi.org/10.1007/978-3-319-66610-5_38
https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1007/s12528-019-09230-1

Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry

371

Pistilli, M. D., Willis, J. E., & Campbell, J. P. (2014). Analytics through an institutional lens: Definition, theory,
design, and impact. In J. Larusson, & B. White (Eds.), Learning analytics (pp. 79–102). Springer.
https://doi.org/10.1007/978-1-4614-3305-7_5

Ramírez-Echeverry, J. J., Restrepo-Calle, F., & González, F. A. (2022). A case study in technology-enhanced
learning in an introductory computer programming course. Global Journal of Engineering Education, 24(1),
65–71. http://www.wiete.com.au/journals/GJEE/Publish/vol24no1/10-Restrepo-Calle-F.pdf

Restrepo-Calle, F., Ramírez-Echeverry, J. J., & Gonzalez, F. A. (2018, July). UNCode: Interactive system for
learning and automatic evaluation of computer programming skills. Proceedings of the 10th International Con-
ference on Education and New Learning Technologies, Palma, Spain, 6888–6898. https://doi.org/10.21125/edu-
learn.2018.1632

Restrepo-Calle, F., Ramírez-Echeverry, J. J., & González, F. A. (2020). Using an interactive software tool for the
formative and summative evaluation in a computer programming course: An experience report. Global Jour-
nal of Engineering Education, 22(3), 174–185. http://www.wiete.com.au/journals/GJEE/Pub-
lish/vol22no3/06-Echeverry-J.pdf

Rienties, B., & Toetenel, L. (2016). The impact of 151 learning designs on student satisfaction and perfor-
mance: Social learning (analytics) matters. Proceedings of the Sixth International Conference on Learning Analytics
& Knowledge (pp. 339–343). Association for Computing Machinery.
https://doi.org/10.1145/2883851.2883875

Salguero, A., Griswold, W. G., Alvarado, C., & Porter, L. (2021). Understanding sources of student struggle in
early computer science courses. Proceedings of the 17th ACM Conference on International Computing Education
Research (pp. 319–333). Association for Computing Machinery. https://doi.org/10.1145/3446871.3469755

Shen, H., Liang, L., Law, N., Hemberg, E., & O’Reilly, U.-M. (2020). Understanding learner behavior through
learning design informed learning analytics. Proceedings of the Seventh ACM Conference on Learning @ Scale (pp.
135–145). Association for Computing Machinery. https://doi.org/10.1145/3386527.3405919

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10),
1380–1400. https://doi.org/10.1177/0002764213498851

Tempelaar, D. T., Rienties, B., & Giesbers, B. (2016). Verifying the stability and sensitivity of learning analytics
based prediction models: An extended case study. In S. Zvacek, M. Uhomoibhi, & M. Helfert (Eds.), Com-
puter supported education (pp. 256–273). Springer. https://doi.org/10.1007/978-3-319-29585-5_15

Vahdat, M., Oneto, L., Anguita, D., Funk, M., & Rauterberg, M. (2015). A learning analytics approach to corre-
late the academic achievements of students with interaction data from an educational simulator. In G.
Conole, T. Klobučar, C. Rensing, J. Konert, & E. Lavoué (Eds.), Design for teaching and learning in a networked
world (pp. 352–366). Springer. https://doi.org/10.1007/978-3-319-24258-3_26

Wu, Y., & Wu, W. (2018). A learning analytics system for cognition analysis in online learning community. In L.
H. U, & H. Xie (Eds.), Web and big data (pp. 243–258). Springer. https://doi.org/10.1007/978-3-030-
01298-4_21

Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learn-
ing courses. The Internet and Higher Education, 27, 44–53. https://doi.org/10.1016/j.iheduc.2015.05.002

https://doi.org/10.1007/978-1-4614-3305-7_5
http://www.wiete.com.au/journals/GJEE/Publish/vol24no1/10-Restrepo-Calle-F.pdf
https://doi.org/10.21125/edulearn.2018.1632
https://doi.org/10.21125/edulearn.2018.1632
http://www.wiete.com.au/journals/GJEE/Publish/vol22no3/06-Echeverry-J.pdf
http://www.wiete.com.au/journals/GJEE/Publish/vol22no3/06-Echeverry-J.pdf
https://doi.org/10.1145/2883851.2883875
https://doi.org/10.1145/3446871.3469755
https://doi.org/10.1145/3386527.3405919
https://doi.org/10.1177/0002764213498851
https://doi.org/10.1007/978-3-319-29585-5_15
https://doi.org/10.1007/978-3-319-24258-3_26
https://doi.org/10.1007/978-3-030-01298-4_21
https://doi.org/10.1007/978-3-030-01298-4_21
https://doi.org/10.1016/j.iheduc.2015.05.002

Discovering Insights in Learning Analytics Through a Mixed-Methods Framework

372

AUTHORS
Edna Johanna Chaparro Amaya obtained her M.Sc. in Systems and
Computing Engineering from Universidad Nacional de Colombia in
2023, following her undergraduate degree in Environmental and
Chemical Engineering from Universidad de los Andes, Colombia, in
2017. Her research interests include engineering education and learning
analytics.

Felipe Restrepo-Calle received his Ph.D. (cum laude) from the
University of Alicante, Spain, in 2011. He worked as a postdoctoral
researcher at the University of Seville, Spain, in 2012 and 2013. Since
2014, he has been working at the Department of Systems and Industrial
Engineering at the National University of Colombia (Universidad
Nacional de Colombia), Bogotá, Colombia, where he is an associate
professor and head of the Programming Languages and Systems (PLaS)
research group. His research interests include programming languages,
dependable design in embedded systems, and engineering education.

Jhon Jairo Ramírez-Echeverry received his Bachelor’s degree in Elec-
tronics Engineering from the Universidad Nacional de Colombia, Mani-
zales (Caldas), Colombia, the M.Sc. degree in Telecommunications Engi-
neering from the Universidad Nacional de Colombia, Bogotá, Colombia,
and the Ph.D. degree (cum laude) in Engineering of Projects and Systems
from the Universitat Politècnica de Catalunya, BarcelonaTech, Spain, in
2017. He is currently an Associate Professor in the Department of Elec-
trical and Electronic Engineering at the Universidad Nacional de Colom-
bia, Bogotá, Colombia. His research interests are engineering education
(self-regulated learning) and electronic telecommunication systems.

	Discovering Insights in Learning Analytics Through a Mixed-Methods Framework: Application to Computer Programming Education
	Abstract
	Introduction
	Background and Related Works
	Learning Analytics
	Learning Analytics in Computer Programming Courses
	Related Works

	Mixed Methodological Design for Learning Analytics
	Phase 1: Quantitative Data
	Phase 2: Qualitative Data
	Phase 3: Discussion

	Proposal Application: Quantitative Data
	Data Preparation
	Interaction with UNCode
	Perception questionnaires

	Data Transformation
	Data Analysis and Results

	Proposal Application: Qualitative Data
	Data Preparation
	Data Transformation
	Learning process question
	Automatic grading question
	Feedback question

	Data Analysis and Results

	Failed
	Failed
	Failed
	Proposal Application: Discussion
	Integration of Phases
	Interpretation
	Hypothesis Generation

	Conclusions and Future Works
	References
	Authors

