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ABSTRACT 
Aim/Purpose This article proposes a framework based on a sequential explanatory mixed-

methods design in the learning analytics domain to enhance the models used to 
support the success of  the learning process and the learner. The framework 
consists of  three main phases: (1) quantitative data analysis; (2) qualitative data 
analysis; and (3) integration and discussion of  results. Furthermore, we illus-
trated the application of  this framework by examining the relationships between 
learning process metrics and academic performance in the subject of  Computer 
Programming coupled with content analysis of  the responses to a students’ per-
ception questionnaire of  their learning experiences in this subject. 

Background There is a prevalence of  quantitative research designs in learning analytics, 
which limits the understanding of  students’ learning processes. This is due to 
the abundance and ease of  collection of  quantitative data in virtual environ-
ments and learning management systems compared to qualitative data.  

Methodology This study uses a mixed-methods, non-experimental, research design. The quan-
titative phase of  the framework aims to analyze the data to identify behaviors, 
trends, and relationships between measures using correlation or regression anal-
ysis. On the other hand, the qualitative phase of  the framework focuses on con-
ducting a content analysis of  the qualitative data. This framework was applied to 
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historical quantitative and qualitative data from students’ use of  an automated 
feedback and evaluation platform for programming exercises in a programming 
course at the National University of  Colombia during 2019 and 2020. The re-
search question of  this study is: How can mixed-methods research applied to 
learning analytics generate a better understanding of  the relationships between 
the variables generated throughout the learning process and the academic per-
formance of  students in the subject of  Computer Programming?  

Contribution The main contribution of  this work is the proposal of  a mixed-methods learn-
ing analytics framework applicable to computer programming courses, which al-
lows for complementing, corroborating, or refuting quantitatively evidenced re-
sults with qualitative data and generating hypotheses about possible causes or 
explanations for student behavior. In addition, the results provide a better un-
derstanding of  the learning processes in the Computer Programming course at 
the National University of  Colombia. 

Findings A framework based on sequential explanatory mixed-methods design in the 
field of  learning analytics has been proposed to improve the models used to 
support the success of  the learning process and the learner. The answer to the 
research question posed corresponds to that the mixed methods effectively 
complement quantitative and qualitative data. From the analysis of  the data of  
the application of  the framework, it appears that the qualitative data, represent-
ing the perceptions of  the students, generally supported and extended the quan-
titative data. The consistency between the two phases allowed us to generate hy-
potheses about the possible causes of  student behavior and provide a better un-
derstanding of  the learning processes in the course. 

Recommendations  
for Practitioners 

We suggest implementing the proposed mixed-methods learning analytics 
framework in various educational contexts and populations. By doing so, practi-
tioners can gather more diverse data and insights, which can lead to a better un-
derstanding of  learning processes in different settings and with different groups 
of  learners.  

Recommendations  
for Researchers 

Researchers can use the proposed approach in their learning analytics projects, 
usually based exclusively on quantitative data analysis, to complement their re-
sults, find explanations for their students’ behaviors, and understand learning 
processes in depth thanks to the information provided by the complementary 
analysis of  qualitative data. 

Impact on Society The prevalence of  exclusively quantitative research designs in learning analytics 
can limit our understanding of  students’ learning processes. Instead, the mixed-
methods approach we propose suggests a more comprehensive approach to 
learning analytics that includes qualitative data, which can provide deeper in-
sight into students’ learning experiences and processes. Ultimately, this can lead 
to more effective interventions and improvements in teaching and learning 
practices. 

Future Research Potential lines of  research to continue the work on mixed-method learning ana-
lytics methodology include the following: first, implementing the framework on 
a different population sample, such as students from other universities or other 
knowledge areas; second, using techniques to correct unbalanced data sets in 
learning analytics studies; third, analyzing student interactions with the auto-
mated grading platform and their academic activities in relation with their activ-
ity grades; last, using the findings to design interventions that positively impact 
academic performance and evaluating the impact statistically through 
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experimental study designs. In the context of  introductory programming educa-
tion, AI/large language models have the potential to revolutionize teaching by 
enhancing the learning experience, providing personalized support, and ena-
bling more efficient assessment and feedback mechanisms. Future research in 
this area is to implement the proposed framework on data from an introductory 
programming course using these models. 

Keywords learning analytics, mixed methods, computer programming, correlation analysis, 
content analysis 

INTRODUCTION 
The past few decades have seen an increase in the use of  technology in education, including comput-
ers, electronic boards, virtual environments, and learning management systems. As a result, the 
amount of  data collected during the learning process has increased exponentially, providing potential 
insights into the factors that contribute to academic success (Baker & Inventado, 2014; Siemens, 
2013). This information can guide institutions, faculty, and students in making decisions related to 
educational administration, teaching, and learning (Kumar et al., 2015; Lazarinis et al., 2022), as well 
as learning outcomes assessment (Ladias et al., 2022). Learning analytics, which involves the analysis 
of  educational data, is considered the future of  education, particularly in higher education contexts 
(Arnold & Pistilli, 2012; Long & Siemens, 2011). Learning analytics builds on traditional educational 
research principles, and leverages innovations such as new forms of  digital data collection and ad-
vanced computational analysis techniques from data science and artificial intelligence (Pistilli et al., 
2014).  

In the context of  computer programming courses, learning analytics has been used for various pur-
poses, such as detecting students at risk of  failing a course (Azcona et al., 2019; Lagus et al., 2018), 
tracking course progress (Shen et al., 2020), and providing personalized feedback to students (Lu et 
al., 2017). The importance of  incorporating learning analytics into computer programming education 
stems from the inherent complexity of  programming tasks (Salguero et al., 2021). For example, stu-
dents must develop problem-solving skills to tackle complex tasks such as understanding the prob-
lem at hand, translating the problem statement into an algorithm using techniques such as pseudo-
code or flowcharts, manually calculating the output using specific input data, implementing the pro-
gram based on the designed algorithm, compiling the program, and identifying and correcting any 
syntax errors or bugs (Aissa et al., 2020). In addition, computer programming courses often face the 
challenge of  maintaining student interest in the field (Margulieux et al., 2020) and ensuring that stu-
dents acquire the expected knowledge as perceived by their instructors (Salguero et al., 2021). There-
fore, having tools and techniques that can help improve the learning design and facilitate student pro-
ficiency is of  great value (Shen et al., 2020). 

However, research by Mangaroska and Giannakos (2017) suggests that quantitative research designs 
still predominate over mixed methods and qualitative studies in learning analytics. This finding is con-
sistent with those of  Macfadyen and Dawson (2010) and Tempelaar et al. (2016), who highlight the 
limitations of  using quantitative data as the sole source of  information to understand students’ learn-
ing processes. This problem arises due to the abundance, greater availability, and ease of  collection 
of  quantitative data in virtual environments and learning management systems compared to qualita-
tive data (Mangaroska & Giannakos, 2017).  

Thus, in this work, we propose a framework based on a sequential explanatory mixed-methods de-
sign in the learning analytics domain to enhance the models used to support the success of  the learn-
ing process and the learner. The framework consists of  three main phases: (1) quantitative data analy-
sis; (2) qualitative data analysis; and (3) integration and discussion of  the results. Furthermore, we ap-
ply this framework by examining the relationships between learning process metrics and academic 
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performance in the subject of  Computer Programming coupled with a questionnaire on students’ 
perceptions of  their learning experiences in this subject. We propose to answer the research question:  

How can mixed-methods research applied to learning analytics generate a better understanding 
of  the relationships between the variables generated throughout the learning process and the 
academic performance of  students in the subject of  Computer Programming?  

The proposed methodological design for this study is non-experimental and uses a mixed approach. 
The quantitative phase of  the research aims to determine the relationships between the calculated 
metrics of  the learning process and the academic performance of  students in the subject of  Com-
puter Programming. On the other hand, the qualitative phase of  the methodology focuses on the 
content analysis of  the qualitative data obtained from a questionnaire in which students expressed 
their learning experiences in the subject. 

This document is structured as follows. The second section provides a description of  the conceptual 
framework and related work on learning analytics, both in general and in the context of  computer 
programming courses. The third section explains the methodological framework of  learning analytics 
based on mixed methods proposed in this research. The fourth and fifth sections describe the prepa-
ration, transformation, and analysis of  quantitative and qualitative data, respectively. The sixth section 
presents a discussion of  the results, integrating the quantitative and qualitative analysis. Finally, the 
last section presents the conclusions and future work derived from this research. 

BACKGROUND AND RELATED WORKS 

LEARNING ANALYTICS 
Learning analytics is a multidisciplinary field that studies different aspects of  education across differ-
ent contexts. While it is not the aim to provide an exhaustive review of  the extensive literature on the 
topic, several key aspects can be highlighted. These include academic performance, student retention, 
motivation (Lonn et al., 2015), engagement (Coffrin et al., 2014), learning gains, satisfaction (Elia et 
al., 2019), metacognitive skills (Wu & Wu, 2018), and self-regulated learning ability, which is deter-
mined by analyzing individual records of  academic performance, interactions with course content, 
and personal information (Kizilcec et al., 2017). Researchers have proposed various models for data 
analysis and the development of  personalized feedback systems (Arnold & Pistilli, 2012), as well as 
predictive models to identify at-risk students (Monllaó Olivé et al., 2020). Other researchers, such as 
Andergassen et al. (2014), and Barber and Sharkey (2012), have investigated potential relationships 
between learning outcomes, student use of  the course learning management system (LMS), and de-
mographic information. 

LEARNING ANALYTICS IN COMPUTER PROGRAMMING COURSES 
The proposed methodological framework of  this work aims to apply learning analytics using a mixed 
research approach in a computer programming course. In the field of  computer science, learning an-
alytics has gained significant importance. Specifically, in computer programming courses, researchers 
are actively exploring ways to predict student behavior and provide personalized feedback. For in-
stance, Azcona et al. (2019) proposed a model to identify students at risk of  failing a Python pro-
gramming course and provide personalized feedback. Shen et al. (2020) used a heat map to visualize 
student engagement with educational resources and activities in an introductory Python MOOC, ex-
amining access patterns and identifying similarities and differences. Lu et al. (2017) applied learning 
analytics to identify students in need of  immediate intervention in a Python MOOC, allowing in-
structors to create adaptive learning guides based on the information gathered. Macfadyen and Daw-
son (2010) analyzed the usage tracking data from an LMS used in a course with Blackboard-Vista, 
while Vahdat et al. (2015) aimed to understand the behavior of  systems and computer engineering 
students in a course using a circuit simulator. Additionally, researchers have also conducted several 
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studies to identify the variables of  the learning process that correlate with students’ academic perfor-
mance. For example, Zacharis (2015) developed a model to predict students at risk of  low perfor-
mance using data collected from the Moodle platform. 

RELATED WORKS  
Researchers have proposed several methodological frameworks for applying learning analytics in edu-
cational research. Clow’s (2012) cyclical model is a closed loop that compares the investigation’s re-
sults with a reference point, such as previous data or expected results and design interventions that 
modify the same learning process studied. Aljohani et al. (2019) proposed a framework that adapts 
learning analytics applications to the specific requirements of  the course, divided into instructional, 
data, analytical, and presentation levels. Carter et al. (2019) proposed a cyclical process consisting of  
observable behaviors’ operationalization, data collection, data analysis, intervention design, and inter-
vention implementation. Ihantola et al. (2015) established an architecture of  the systems and subsys-
tems present in learning analytics research applied in computer science courses. Siemens (2013) pro-
posed a generalizable architecture that uses a top-down approach to systematize the educational re-
sources used.  

Despite the progress in learning analytics, there are still several challenges in this field. One of  the 
main challenges is the over-reliance on quantitative methods in research, as opposed to qualitative or 
mixed methods (Mangaroska & Giannakos, 2017; Tempelaar et al., 2016). Moreover, with the recent 
shift towards semi-face-to-face or fully virtual classrooms, learning analytics applications based exclu-
sively on quantitative methods face difficulties in comprehending learning processes entirely (Kop et 
al., 2017; Rienties & Toetenel, 2016). To address this limitation, high-quality educational information 
is needed to inform decision-making on the generation and implementation of  educational interven-
tions (Hilliger et al., 2020). 

MIXED METHODOLOGICAL DESIGN FOR LEARNING ANALYTICS 
The proposed methodological framework aims to apply learning analytics using a mixed research ap-
proach. The research design is non-experimental as the data have been collected without modifying 
the variables of  the context. The proposed design for educational research is complemented by a 
mixed methods research approach, and an explanatory sequential type of  study is suggested for this 
type of  research (Bryman, 2015; Creswell, 2014). The explanatory sequential methodology uses the 
results found with qualitative methods to find a likely explanation for the findings found by quantita-
tive methods. 

Figure 1 illustrates the proposed methodological framework, which consists of  three sequential 
global phases: (1) quantitative data, (2) qualitative data, and (3) discussion. The first two phases are 
divided into three stages, which are represented in the figure by the dotted black lines. These stages 
correspond to data preparation, data transformation, and data analysis. The quantitative analysis 
(Phase 1) is consistent with existing research in learning analytics, which has traditionally focused on 
quantitative analysis. While the specific approach in Phase 1 may have some novel aspects, it is based 
on established practices of  data collection and analysis in the field of  learning analytics. In contrast, 
the qualitative analysis (Phase 2) and the discussion of  the results of  both quantitative and qualitative 
analyses (Phase 3) can be seen as novel contributions of  this research. The literature review indicated 
that the inclusion of  qualitative analysis in learning analytics is an emerging area with limited existing 
research. Therefore, the inclusion of  Phases 2 and 3 in the proposed framework adds value by ad-
dressing this gap and providing new insights into the learning analytics process. Each of  the activities 
in the proposed methodology is described in detail below. 
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Figure 1. Proposed methodological framework 

for learning analytics through a mixed-methods research approach 

PHASE 1: QUANTITATIVE DATA 
In this phase, quantitative data related to students’ interactions in the course and their academic per-
formances are collected from the learning platform. This data includes information such as the num-
ber of  times students accessed the platform, the time spent on each activity, the number of  attempts 
made, and the scores obtained.  

This phase begins with the data collection, where the location and format of  the available data is identi-
fied. Then, the data on the students’ learning process is gathered using a data management and analy-
sis tool. The next step is dataset consolidation, which is necessary because raw data is often disaggre-
gated. During this stage, the most appropriate data structures are identified for the organization and 
manipulation of  the consolidated data. 

After consolidation, dataset cleaning is performed to identify variables that provide useful information 
about the learning process. Variables that are not related to the objective of  the study or those with 
data quality issues are discarded. The identification of  variables follows, where a literature review of  
measurements and metrics used in educational research in the field of  the target course is conducted. 
The measurements found in the literature that are present in the dataset are then identified, and ap-
propriate metrics are built using them. 

Next, metrics design is performed, where the equations needed for the estimation of  metrics are estab-
lished based on the results found in the literature. At this point, it is necessary to define the scale 
(nominal, ordinal, interval, ratio) for the metrics and units of  measurement when appropriate. The 
equations proposed in the metrics design stage are then applied in the data management tool, and the 
values obtained are stored for later analysis (metrics calculation). Exploratory data analysis is then per-
formed based on the previous measurements and metrics to identify behaviors and trends. Descrip-
tive statistics, such as the arithmetic mean, dispersion measures, skewness, and visualizations like box 
plots, histograms, etc., are used during this stage. 

Finally, data analysis and modeling techniques are applied, and the relationships between metrics and meas-
urements are identified through correlation or regression analysis. In addition, supervised or 
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unsupervised machine learning techniques can be applied if  the goal of  the work is to obtain classifi-
cations, regressions, or clustering of  data. 

PHASE 2: QUALITATIVE DATA  
To begin this activity, the research design for the qualitative methodology needs to be selected, such 
as grounded theory, ethnographic study, narrative, phenomenological, or action-participatory re-
search (Hernández-Sampieri et al., 2014). Then, the population sample of  interest should be identi-
fied, and the research method for the study (data collection tools), such as interviews, questionnaires, 
focus groups, etc., should be selected. All collected data should be stored in a defined location, such 
as a local storage or a shared file storage platform. The format of  the stored files should also be de-
termined, depending on the data source, whether it is text, image, video, or audio files. 

The next step is dataset consolidation. In this activity, all the collected data is stored in a defined loca-
tion, and the format of  the data set is made uniform. After that, the dataset cleaning consists of  remov-
ing data from the dataset; in the case of  records identified as having data that is missing, incomplete, 
atypical, or irrelevant, it should be removed. In addition, if  the amount of  data is large, computa-
tional tools such as Atlas.ti, Decision Explorer, Etnograph, and NVivo may be used. 

The content analysis of  qualitative data begins with the theme exploration. This activity starts the pro-
cess of  content analysis of  qualitative data, which is represented by the blue box in Figure 1. Content 
analysis is defined by Bryman (2015) as the systematic and reproducible quantification of  documents 
and texts, both printed and visual, in terms of  predetermined categories. This is a nonlinear and iter-
ative process, as the tasks of  coding and categorizing are not single events within the procedure (Her-
nández-Sampieri et al., 2014). The basic unit of  analysis or meaning is chosen, and the information 
collected is divided into specific fragments labeled with codes that emerge from the interpretation of  
the data. 

The process of  open coding involves dividing the data into small fragments and labeling them with ap-
propriate codes that indicate global ideas. Similar codes are grouped and labeled with the same code 
to ensure that segments related to the same topic are categorized accurately. 

The axial coding identifies connections between the codes generated in open coding and groups them 
into categories (Corbin & Strauss, 1990). From these categories, associations are identified, such as 
causal relationships, context behind observations, or consequences of  the phenomenon, and catego-
ries can be grouped into general themes. 

Finally, selective coding identifies the central phenomenon or category that unifies all other categories 
and themes resulting from previous coding (Corbin & Strauss, 1990). This process, also known as 
data relativization, may refine some codes and result in the creation, mixing, splitting, or elimination 
of  labels. The step-by-step approach to data relativization is as follows (Corbin & Strauss, 1990):  

1. Based on the trends identified in the data, define the central category that groups all the 
themes and categories of  the axial coding and captures the general idea of  the qualitative re-
search results.  

2. Identify the links between the general category and the rest of  the themes and categories to 
determine the final narrative of  the research report.  

3. Identify the themes, categories, and codes that appear to be unrelated to the central phenom-
enon identified and verify whether the amount of  data from these labels is sufficient to con-
sider the results relevant. In the case that the information is insufficient, the label should be 
eliminated.  

4. Review the original data again and code the fragments of  information considering the gen-
eral category generated. 
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PHASE 3: DISCUSSION 
As the proposed methodological design follows a sequential explanatory mixed methods approach, 
this phase consolidates the findings of  the quantitative phase with those of  the qualitative phase. The 
aim is to explain the findings of  the first phase using those of  the second phase, which helps to ver-
ify whether the behaviors identified through quantitative data are supported or refuted by qualitative 
data (integration of  phases stage). This approach broadens the scope of  the results of  the quantitative 
phase and generates clarifications of  the behaviors found from a qualitative perspective. 

The stage of interpretation involves a detailed analysis of  the research questions and their answers 
based on the specific results obtained. The results are then compared with the findings of  related 
works that were studied in the literature review. In cases where the results differ from the existing lit-
erature, the possible reasons for such discrepancies should be stated, including factors that may be 
related to the dataset, the course characteristics, and the context, among others. 

Finally, the hypothesis generation begins with an in-depth analysis of  the results obtained, which includes 
a detailed description of  the possible reasons for the identified behaviors. This approach helps to for-
mulate hypotheses that describe aspects of  learning processes that may occur in the educational envi-
ronment under study. Based on these hypotheses, it is essential to reflect on how the research find-
ings contribute to the scientific community, particularly in the field of  learning analytics. These find-
ings can guide future research projects and work. 

PROPOSAL APPLICATION: QUANTITATIVE DATA  
The proposed methodological framework for learning analytics using a mixed-methods research ap-
proach is intended to be applied in the context of  computer programming courses using educational 
platforms that facilitate the collection and storage of  data on student interactions. The selection of  
computer programming courses as the context for the case study is primarily intended to demon-
strate the practical application of  the proposed methodology in a real-world setting. However, it is 
important to note that the methodology itself  can be applied to other domains within the field of  
learning analytics. 

This study analyzes the use of  the UNCode platform, an educational platform used in the Computer 
Programming courses at the National University of  Colombia for the automatic evaluation of  pro-
gramming exercises (Restrepo-Calle et al., 2018, 2020). The research question of  this proposal appli-
cation is:  

How can mixed-methods research applied to learning analytics generate a better understanding 
of  the relationships between the variables generated throughout the learning process and the 
academic performance of  students in the subject of  Computer Programming?  

The study considers two sources of  information: (1) the record of  students’ interactions with the 
UNCode platform, stored in a MongoDB database, and (2) questionnaires on students’ perceptions 
about the use of  the educational platform, stored in spreadsheets by academic period.  

UNCode allows students to submit multiple attempts (source code or Jupyter notebooks) to solve 
programming tasks. For each solution attempt, the platform stores the program file, submission date, 
and time. It also provides automatic feedback through verdicts related to syntax, semantics, and pro-
gram efficiency, as well as a numerical grading based on the test cases the program solved. UNCode 
provides several learners’ support tools, such as syntax highlighting, code auto-completion, Linter 
(suggestions for good programming practices), visualization of  code execution, custom tests, and 
grade reports. Further details on the functionalities of  UNCode can be found in Restrepo-Calle et al. 
(2018). 

In the context of  the computer programming course, the objective of  Phase I is to collect and ana-
lyze quantitative data from the students’ interactions with the educational platform and their 
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corresponding academic performance, as well as quantitative data from the students’ perception 
questionnaires. The collected quantitative data will provide a rich source of  information that can help 
identify relationships, evaluate performance, plan interventions, and improve the computer program-
ming course for better student outcomes. 

DATA PREPARATION   

Interaction with UNCode 
The study population consisted of  students who took the subject of  Computer Programming at the 
National University of  Colombia between the first academic period of  2019 and the second period 
of  2020 (2 years - 4 academic semesters), during which the UNCode educational platform was used 
in the course activities. The study is limited to 24 computer programming courses that used the UN-
Code platform to support mandatory academic assignments. The total number of  students in these 
groups was 772. The platform was available throughout the study period. The data collection process is 
performed to select the 16 collections in the database. The selected collections are Aggregations, An-
alytics, Students Grades, Submissions, Tasks, User Tasks, and Users. The data was then organized 
into individual folders for each course, which contain the following files: 

1. Students: This file contains a list of  users identified with the student role. 
2. Analytics: Information about the use of  UNCode tools by users is stored here. The follow-

ing five tools are available: 
a. Custom input: This tool enables the design and running of  custom tests to evaluate the 

built programs. 
b. Python tutor: This tool allows visualization of  the execution flow of  the designed pro-

gram step by step. 
c. Multiple languages code: This option enables the evaluation of  source code written in 

different programming languages, such as C/C++, Java, and Python. 
d. Linter: A highlighting tool that identifies errors and provides recommendations in the 

source code based on principles of  good programming practices. 
e. User statistics: This file contains statistical reports on the grades obtained by each stu-

dent. 
3. UNCode_grades: This file contains the final grades assigned to each student that corre-

sponds to the weighted average of  the grades obtained from the activities performed within 
the platform. 

4. Submissions: This file contains a record of  the solution attempts sent by the students in the 
course activities. Each solution attempt is specified by the date and time of  submission, the 
activity identifier, the username, and the course identifier. Additionally, the file contains the 
identifier of  the file sent, the numerical grade on a scale from 0 to 100, the tests performed, 
and the verdict obtained. 

5. Input: This file contains the specifications of  the files sent by each student in each solution 
attempt. The columns correspond to the file identifier (index), the name of  the file loaded 
on the platform (file_name), and the programming language used (language). 

6. Tasks: This file contains information about the course activities developed within the plat-
form. Each file has a column with the course identifier (course_id) and the activity identifier 
(task_id). 

7. User_tasks: This file summarizes the number of  attempts made by each student in the 
course activities. 

For the data consolidation, each course folder contains a directory containing all the files submitted by 
the students in each solution attempt. These files are organized into directories per student, which 
contain subdirectories for each course activity. 



Discovering Insights in Learning Analytics Through a Mixed-Methods Framework 

348 

Regarding the data cleaning stage, first, a filter was applied to select computer programming courses 
with a high number of  activities on the platform. The courses G15-2019-2 and G16-2019-2 have the 
maximum number of  activities, 102. In contrast, G8-2020-1 has the least number of  activities, only 
15. All courses have sufficient interaction data recorded. However, the pilot courses group-5 and 
group-6 are discarded, as the platform was used for preliminary study, making their data incompara-
ble to the other courses. Therefore, 22 groups are considered in the final dataset. 

Secondly, activities with a low number of  submissions are filtered out, using a minimum limit of  15 
submissions per activity. Activities with low or no submissions possibly correspond to tests of  UN-
Code operation or optional activities, making the data irrelevant. This filter eliminated 49 activities 
out of  1404 from the dataset. Activities with notebook-type files are discarded as they are not com-
parable with source code files submitted in other activities. Three such activities were identified in the 
course G18_2020_1, reducing the total number of  activities in the dataset to 1352. 

Subsequently, a student filter is applied based on the total number of  submissions registered per stu-
dent. Some students have few or no submissions registered, indicating early withdrawal. Using the 
same minimum limit of  15 submissions, 37 students with less than the minimum number of  submis-
sions were identified and excluded from the dataset. After this process, the resulting dataset con-
tained data from a total of  735 students.   

Perception questionnaires 
Moreover, during the same period (from the first semester of  2019 to the second semester of  2020), 
we conducted a questionnaire-based approach to gather students’ perceptions of  using UNCode in 
the Computer Programming courses. The questionnaires were administered to 17 of  the 24 course 
groups, and the responses were stored in spreadsheets by academic period. Although not all course 
groups participated in the questionnaires due to logistical inconveniences due to instructors’ deci-
sions, the representativeness of  the selected course groups provides the perceptions of  participants 
from the majority of  the groups. Therefore, this fact might not have introduced any potential bias or 
limitation to the results. The questionnaires were administered before students learned their final 
grades during week 14 of  the course (out of  16 weeks). In addition, the questionnaire was adminis-
tered via Google Forms, which ensured a convenient and accessible method of  data collection. The 
questionnaires also asked for informed consent from the participants, ensuring ethical considerations 
in the administration process. 

The questionnaire data include demographic information about the students and their responses to 
questions about their use of  the platform. However, only closed-ended questions were considered in 
this phase, as they provide quantitative data. The questions were presented as statements, and stu-
dents were asked to answer using a Likert scale from 1 to 6. The statements were as follows: 

1. Indicate your level of  agreement or disagreement regarding the following statements, with a 
maximum value of  6 indicating the highest level of  agreement and a value of  1 representing 
the highest level of  disagreement:  

a. UNCode was useful in their computer programming learning process. 
b. UNCode was helpful in obtaining automatic grading for the programs you developed in 

this subject. 
c. The automatic feedback provided by UNCode was useful to know how to correct er-

rors in my programs. 
2. Rate the following UNCode features according to how useful you think they are for learning 

computer programming, with a maximum level of  6 indicating the highest level of  useful-
ness and a value of  1 representing the least level of  usefulness: 

a. Testing of  programs using user-supplied inputs (custom input). 
b. Programming best practices verification tool (Linter). 
c. Visualization of  program execution (Python Tutor). 
d. Performance reports (statistics). 
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The questionnaire responses on perception are compiled into one file that combines the information 
from all the courses. Using a Colab notebook, each spreadsheet is converted into a Pandas Data-
Frame, and then these DataFrames are concatenated into one, which includes the columns with the 
student’s username, date of  birth, gender, academic program, and course group (course_id). Further-
more, the responses to the closed-ended perception questions are also included. 

To clean the consolidated data gathered from the perception questionnaires on the use of  UNCode, ini-
tially, the dataset is filtered to remove students with insufficient information. This filtering eliminates 
33 students, resulting in a final set of  349 students who participated in the perception questionnaire. 
This number represents 47.5% of  the 735 students from the collected dataset with the interaction 
with UNCode. Next, a filter is applied to the closed-ended questions of  the questionnaire, which are 
answered on a Likert scale. The questionnaire comprises 21 such questions, but 14 are discarded as 
they have responses from less than 25% of  the total number of  participants. As a result, only seven 
of  the closed-ended questions are considered in the final dataset, as mentioned above. 

DATA TRANSFORMATION 
Table 1 lists the 15 measurements that are of  interest in this research from the students’ interaction 
with UNCode (identification of  variables). These are classified into four categories:  

1. Submissions: data related to the attempts made by each student to solve programming as-
signments. 

2. Verdicts: data related to the feedback received for each solution attempt. 
3. Tool usage: data on the number of  times each platform tool is accessed. 
4. Academic performance: numerical grading of  the submissions made by the students. 

Moreover, software metrics of  the students’ programs are obtained from the source code files sub-
mitted as solutions to the programming tasks. 

Table 2 presents the 13 measures identified in the dataset obtained from the perception question-
naires (identification of  variables). These measures are classified into two categories: 

1. Demographic data: includes information that characterizes the student sample. 
2. Closed-ended questions: include responses on a Likert scale regarding the use of  the plat-

form and its tools during the course activities. 

Based on the measures identified in Table 1 and Table 2, 25 metrics were developed and categorized 
as follows (metrics design): 

1. Verdict rates: These represent the ratio of  a specific type of  verdict to the total number of  
verdicts obtained by each student. The equations used to calculate them are specified in Ta-
ble 3. 

2. Tool usage rates: This category refers to the percentage of  accesses to a specific tool in rela-
tion to the total number of  accesses registered for all tools available on the platform per stu-
dent. The equations used to calculate tool usage rates are also specified in Table 3.  

3. Software metrics: This category represents specific characteristics of  the source codes cre-
ated by students. Table 4 describes the metrics and equations used to calculate them, which 
are based on the number of  operands, operators, executable lines of  code, and reserved 
words used in the code built as a solution to the course activities. These software metrics 
were calculated using the specialized Python libraries. The lizard library is used to quantify 
lines of  code (NLOC) and token count. The radon library is applied to calculate the cy-
clomatic complexity (G), maintainability index (MI), and Halstead metrics. Subsequently, the 
average of  the metrics of  all the files submitted by each student was estimated. 

4. Demographic data: Besides the measures related to demographic data from Table 2, this cat-
egory includes students’ age, which is calculated based on their date of  birth recorded in the 
questionnaires and the date of  completion. 
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It is worth noting that the first two categories of  verdict rates and tool usage rates are aimed at iden-
tifying the most and least used verdicts and tools, respectively. 

Table 1. Measurements considered in the dataset from interaction with UNCode 

CATEGORY MEASUREMENT DESCRIPTION SCALE UNITS 

Submissions 
Total_Submissions Number of attempts submitted per student. Ratio Count 

Duration_of_Submission Average time spent by students between sub-
mission attempts. 

Ratio Minutes 

Verdicts 

Accepted Number of solutions with correct answers. Ratio Count 

Wrong_Answer Number of solutions with incorrect answers. Ratio Count 

Compilation_Error Number of submitted attempts that fail to 
compile. 

Ratio Count 

Runtime_Error Number of attempts that succeed in compil-
ing but fail during execution. 

Ratio Count 

Time_Limit_Exceeded Number of attempts that take too long to ex-
ecute. 

Ratio Count 

Memory_Limit_Exceeded Number of attempts that exceed the memory 
available for execution. 

Ratio Count 

Output_Limit_Exceeded Number of attempts that exceed the ex-
pected program output size. 

Ratio Count 

Tool usage 

Python_Tutot 
Number of logged accesses to the Python tu-
tor tool that allows visualization step-by-step 
execution of a program. 

Ratio Count 

Custom_Input 
Number of registered accesses to the Custom 
input tool where students perform custom 
tests on their programs. 

Ratio Count 

Linter 
Number of registered accesses to the Linter 
tool, which highlights syntax and style prob-
lems in the source code. 

Ratio Count 

User_Statistics 
Number of registered accesses to the interac-
tive dashboard to report on students’ individ-
ual statistics. 

Ratio Count 

Multiple_Languages_Code 
Number of accesses to the Multiple Lan-
guages tool that allows submission in differ-
ent programming languages. 

Ratio Count 

Academic 
performance uncode_grade Weighted average of grades of the activities 

performed by students in UNCode. 
Ratio Per-

centage 

Table 2. Measurements considered in the dataset from the perception questionnaires  
CATEGORY MEASUREMENT DESCRIPTION SCALE 

Demographic 
data 

Birthdate Day, month, and year of the student’s birth. Date 

Sex Variable that represents the sex of the student Nominal 

Academic program Corresponds to the student’s university career, with 15 options 
available. 

Nominal 

Closed-ended 
questions 

QUESTION: Learning 
process 

Level of agreement or disagreement in Likert scale of the student 
with the statement: “UNCode was useful in their computer pro-
gramming learning process”. 

Ordinal  
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CATEGORY MEASUREMENT DESCRIPTION SCALE 

QUESTION: Automatic 
grading 

Level of agreement or disagreement in Likert scale of the student 
with the statement: “UNCode was helpful in obtaining automatic 
grading for the programs you developed in this subject.”. 

Ordinal  

QUESTION: Feedback 
Level of agreement or disagreement in Likert scale of the student 
with the statement: “The automatic feedback provided by UN-
Code was useful to know how to correct errors in my programs”. 

Ordinal  

A_Custom_input 
Likert-scale response to the statement: “Rate the following UN-
Code features according to how useful you think they are for 
learning computer programming:”, regarding testing of programs 
using user-supplied inputs (custom input). 

Ordinal  

A_Linter 
Likert scale response to the statement: “Please rate the following 
UNCode features according to how useful you think they are for 
learning computer programming:”, regarding the programming 
best practices verification tool (Linter). 

Ordinal  

A_PythonTutor 
Likert-scale response to the statement: “Rate the following UN-
Code features according to how useful you think they are for 
learning computer programming:”, regarding the visualization of 
program execution (Python Tutor). 

Ordinal  

A_Statistics 
Likert scale response to the statement: “Rate the following UN-
Code features according to how useful you think they are for 
learning computer programming:”, regarding performance re-
ports (statistics). 

Ordinal  

Table 3. Metrics based on the verdicts and tool usage measures 
CATE-
GORY METRIC EQUATION SCALE UNITS 

Verdicts 
rates 

Success_rate 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100 

Ratio Percentage 

Error_rate_Wrong_Answer 
𝑊𝑊𝑉𝑉𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Error_rate_Compilation_Error 
𝐶𝐶𝑊𝑊𝐶𝐶𝐴𝐴𝑉𝑉𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉𝑊𝑊𝑊𝑊𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Error_rate_Runtime_Error 
𝑅𝑅𝑅𝑅𝑊𝑊𝐴𝐴𝑉𝑉𝐶𝐶𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Error_rate_Time_Limit_Exceeded 
𝑇𝑇𝑉𝑉𝐶𝐶𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴

∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100 

Ratio Percentage 

Error_rate_Memory_Limit_Exceeded 
𝑀𝑀𝐴𝐴𝐶𝐶𝑊𝑊𝑉𝑉𝑀𝑀𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Error_rate_Output_Limit_Exceeded 
𝑂𝑂𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴
∑ 𝑉𝑉𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Tool 
usage 
rates 

Python_Tutor_rate 
𝑃𝑃𝑀𝑀𝐴𝐴ℎ𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐴𝐴
∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Custom_input_rate 
𝐶𝐶𝑅𝑅𝑠𝑠𝐴𝐴𝑊𝑊𝐶𝐶𝑖𝑖𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇

∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100 

Ratio Percentage 

Linter_rate 
𝐿𝐿𝑉𝑉𝑊𝑊𝐴𝐴𝐴𝐴𝑉𝑉
∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

User_Statistics_rate 
𝑈𝑈𝑠𝑠𝐴𝐴𝑉𝑉𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇𝑖𝑖𝐴𝐴𝑇𝑇𝑖𝑖𝑆𝑆𝐴𝐴
∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖

∙ 100 
Ratio Percentage 

Multiple_Languages_Code_rate 
𝑀𝑀𝑅𝑅𝐶𝐶𝐴𝐴𝑉𝑉𝐴𝐴𝐶𝐶𝐴𝐴𝐿𝐿𝑆𝑆𝐴𝐴𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿𝐴𝐴

∑ 𝑇𝑇𝑊𝑊𝑊𝑊𝐶𝐶𝑠𝑠𝑖𝑖𝑖𝑖
∙ 100 

Ratio Percentage 
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Table 4. Software metrics from source code files submitted by students  

CATEGORY METRIC DESCRIPTION/EQUATION SCALE UNITS 

Software 
metrics 

Lines of code (NLOC) Number of lines of code excluding com-
ments 

Ratio Count 

Tokens_count Number of tokens of the programming lan-
guage used in the code. 

Ratio Count 

Cyclomatic complexity (G) Number of decision blocks contained in the 
code, plus one. Lower is better. 

Ratio Count 

Program vocabulary (n) 
𝑊𝑊 = 𝑊𝑊1 + 𝑊𝑊2 

𝑊𝑊1: The number of distinct operators. 
𝑊𝑊2: The number of distinct operands 

Ratio Count 

Program length (N) 
𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 

𝑁𝑁1: The total number of operators 
𝑁𝑁2: The total number of operands 

Ratio Count 

Calculated program length (L) 𝐿𝐿 = 𝑊𝑊1 ∙ 𝐶𝐶𝑊𝑊𝑊𝑊2(𝑊𝑊1) + 𝑊𝑊2 ∙ 𝐶𝐶𝑊𝑊𝑊𝑊2(𝑊𝑊2) Ratio Decimal 

Volume (V) 𝑉𝑉 = 𝑁𝑁 ∙ 𝐶𝐶𝑊𝑊𝑊𝑊2(𝑊𝑊)                                                
(Acceptable range between 20 and 1000) 

Ratio Decimal 

Difficulty (D) 𝐷𝐷 = 𝐴𝐴1
2
∙ 𝑁𝑁2
𝐴𝐴2

   (Lower is better) Ratio Decimal 

Effort (E) 𝐸𝐸 = 𝐷𝐷 ∙ 𝑉𝑉   (Lower is better) Ratio Decimal 

Time required to program (T) 𝑇𝑇 = 𝐸𝐸 18⁄   (Lower is better) Ratio Minutes 

Number of delivered bugs (B) 𝐵𝐵 = 𝑉𝑉 3000⁄   (Lower is better) Ratio Decimal 

Maintainability index (MI) Measure of how easy to support and change 
the source code is (0-100). Higher is better. 

Ratio Decimal 

 

DATA ANALYSIS AND RESULTS 
This section summarizes the results of  the exploratory data analysis (univariate analysis) of  some of  the 
measures and metrics considered in the dataset. For the total number of  submissions made by the 
students (Figure 2), the average is 176.6 submissions with a standard deviation of  120.8. The stand-
ard deviation value corresponds to more than 68% of  the average, indicating a high dispersion of  the 
data, which may suggest that students use different techniques in problem-solving. Some students 
may make many submissions with small changes in each attempt, while others may make extensive 
modifications resulting in fewer attempts on the platform. 

The tool usage (Figure 3) shows that the most used tool is “Custom_input” with 65.0% of  the total 
recorded accesses, indicating that most students prefer to test the effectiveness of  their programs 
with self-designed tests. The usage rates of  “Python_Tutor” and “Multiple_Languages_Code” are 
17.7% and 12.0%, respectively. The use of  “Python_Tutor” indicates that some students find it help-
ful to observe the step-by-step execution flow of  the constructed program, possibly for error loca-
tion. On the other hand, the use of  “Multiple_Languages_Code” reflects the proportion of  student 
interactions related to code submissions in one of  the supported programming languages. The least 
used tools are “Linter” (5.1%) and “User Statistics” (0.5%). The low use of  these tools may indicate 
that students consider the information provided by these tools insufficient to help them improve 
their constructed solutions. 
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Figure 2. Exploratory Data Analysis: Total submissions box plots by group 

 

 
Figure 3. Exploratory Data Analysis: Tools usage 

Regarding the verdicts obtained (Figure 4), the judgment with the highest number of  records is 
“wrong answer” (48.9%). This result indicates that most students are successful in designing executa-
ble solutions but struggle to meet the specific objectives of  the activities. The second verdict with a 
high number of  records is “correct answer” (31.7%), indicating that many students are able to apply 
the knowledge of  the course in solving programming problems. The verdicts that follow in magni-
tude are “execution error” (14.6%) and “time limit exceeded” (3.9%). The sum of  the verdicts ob-
taining less than 1.0% – “compilation error,” “memory limit exceeded,” and “result limit exceeded” – 
represents less than 20% of  the recorded judgments, indicating that few students have difficulties or 
doubts specifically in the executable program design process. 

After analyzing the descriptive statistics derived from the software metrics calculated based on the 
programs constructed by the students, we observed a high degree of  dispersion in the data, as indi-
cated by the standard deviations, which are greater than the average in several cases. The metrics with 
the highest degree of  data dispersion are the effort and time required to program, with deviations of  
1603.8 and 89.1, respectively. This suggests a wide variety of  solutions constructed by the students. 
On the other hand, the metrics with lower data dispersion are maintainability index (6.4) and diffi-
culty (1.3), corresponding to 10.5% and 35.1% of  their respective averages. The low dispersion of  
these metrics possibly indicates that the students in this course possess similar capabilities and abili-
ties for program construction. These results are consistent with the fact that Computer Programming 
is an introductory course, and for many students, this is their first exposure to programming lan-
guages.  
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Figure 4. Exploratory Data Analysis: Verdicts obtained in the submissions 

Furthermore, a correlation analysis was conducted with UNCode_grade as the dependent variable. 
Firstly, the Shapiro-Wilks normality test was performed on the academic performance data to deter-
mine the appropriate statistical test for calculating the correlations. The test resulted in a p-value > 
0.05, indicating that normality cannot be assumed in the data. Therefore, Spearman’s correlation co-
efficient was used as it does not require the samples to be normally distributed. Sex and Academic 
program variables were not considered in the analysis, as Spearman’s coefficient is used to quantify 
correlations between non-categorical variables. Figure 5 shows the 29 measures and metrics that have 
a statistically significant correlation (p-value ≤ 0.05) with academic performance. 

 

Figure 5. Variables with significant correlations with respect to academic performance 
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The variable with the highest positive correlation is “Accepted,” with a coefficient of  0.41. This is ex-
pected, as students who answer more questions correctly are typically more successful at solving 
course exercises. The next two variables in order of  magnitude are “Learning Process” and “Auto-
matic Grading,” with coefficients of  0.26 and 0.25, respectively. These results make sense, as students 
who find the platform useful for learning and appreciate the benefits of  automatic grading are more 
likely to effectively use platform tools and improve their programming skills. 

The variable “Success_rate” also has a positive correlation of  0.22, which is expected as students 
who answer a high percentage of  assignments correctly demonstrate strong programming skills. 
Next, the positive correlations of  “Total_Submissions” and “Custom_Input_rate” both with a corre-
lation coefficient of  0.21. In the first case, this may indicate that some students submit many solu-
tions until they get the correct one. In the second case, a student who is able to perform custom tests 
is likely more knowledgeable about programming and can construct and correct programs more ef-
fectively. 

In contrast, the variables with the highest negative correlation are the number of  accesses to 
“Linter,” “Multiple_Languages_Code,” “Linter_rate,” and “Multiple_Languages_Code_rate,” with 
values between -0.3 and -0.23. These negative correlations are unexpected, as these tools are designed 
to support the learning process of  students.  

The academic performance values were categorized into two groups: passing students (approved), 
with final grades equal to or higher than 3.0, and students who did not pass the subject (failed). This 
categorization was done to identify whether the correlations between measures and metrics changed 
between high-performing and low-performing students. Figure 6 presents the significant correlations 
(p-value ≤ 0.05) for both categories of  students. 

Focusing on the variables that turned out to be significant in both categories, we observed that six 
variables had positive correlation coefficients, while one variable had a negative correlation. The posi-
tive correlations were found in the variables Accepted, Success_rate, Time_Limit_Exceeded, To-
tal_Submissions, Wrong_Answer, and Error_rate_Time_Limit_Exceeded.  

In all cases, the positive correlations were stronger in the group of  students who did not pass the 
course. Moreover, the variable with a negative correlation shared by both groups of  students was the 
Error_rate_Runtime, which was higher in the case of  failed students. 

At this point in the research, after completion of  the Phase I application, it is worth noting that rely-
ing solely on quantitative data may leave researchers with unanswered questions and gaps in their un-
derstanding of  the research problem. For example, what are the underlying reasons for some of  the 
relationships identified? Therefore, in the proposed mixed-methods framework for learning analytics, 
we emphasize the importance of  incorporating qualitative analysis (Phase II) and discussion of  the 
results (Phase III) to address the research questions more comprehensively. 
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Figure 6. Variables with significant correlations with respect to the academic performance of  

students discriminated by academic performance (approved and failed) 

PROPOSAL APPLICATION: QUALITATIVE DATA 
During the qualitative analysis phase, the focus shifts to analyzing qualitative data collected from stu-
dents’ experiences in the computer programming course. Qualitative data may include responses 
from questionnaires, interviews, or open-ended questions that capture students’ perceptions, feed-
back, and subjective experiences. The methods and analysis of  qualitative data seek to find possible 
explanations for the findings of  quantitative methods. The goal is to explain the findings of  the first 
phase with the findings of  the second phase, which helps to verify whether the behaviors identified 
by the quantitative data are confirmed or refuted by the qualitative data. This approach broadens the 
scope of  the results of  the quantitative phase and generates clarifications of  the behaviors found 
from a qualitative perspective. By incorporating the qualitative dimension, educators can gain richer 
insights into students’ perspectives, which can inform targeted interventions and improvements in 
the computer programming course. 
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DATA PREPARATION  
In the quantitative phase, the sample of  participants was defined as a subset of  the data set from 17 
out of  24 Computer Programming courses, covering the period from the second semester of  2019 to 
the second academic period of  2020 (the Collection stage). Perception questionnaires were conducted 
among students on the use of  UNCode in the subject, using Google Forms, and the responses were 
stored in a spreadsheet for each semester. Only the answers to the open-ended questions of  the 
questionnaire were used in this phase, as they were qualitative in nature. The open questions asked 
students to explain the reasons behind their agreement or disagreement with the statements of  the 
closed questions considered in the quantitative phase (Table 2). The responses collected from the 
spreadsheet files were grouped and coded by subject matter to homogenize the data set (Consolidation 
and Cleaning stages). The final data set contains responses from 349 students who participated in the 
perception questionnaire. The responses were related to open questions on the usefulness of  the 
UNCode platform to enhance learning in computer programming (named ANSWER: Learning pro-
cess), automatic grading (named ANSWER: Automatic grading), and feedback (named ANSWER: 
Feedback). The textual answers provided by students in response to each of  these three open ques-
tions are identified as the basic unit of  analysis. 

DATA TRANSFORMATION 
The stage of  theme exploration begins the process of  content analysis of  the qualitative data. This anal-
ysis was carried out with the support of  the NVivo computational tool. A preliminary review of  the 
basic units of  analysis was carried out, identifying recurrent, preconceived, and/or emerging themes. 

For the open coding stage, the first level of  content analysis coding involves assigning one or more 
codes and categories to each basic unit of  analysis. Keep in mind that the open and axial coding pro-
cess is not a strictly sequential process, and the generation of  codes and categories may overlap with 
the identification of  general themes. Additionally, some units may lack detail, and thus only be placed 
in general themes without category or code. For each of  the three questions, the identified categories 
and codes are listed and described below. 

Learning process question 
Regarding the learning process question, we generated a total of  5 themes, 21 categories, and 15 
codes related to the usefulness of  the platform in students’ learning process. Table 5 specifies the 
number of  units of  analysis grouped by code, category, and general theme, which are classified by 
students’ academic performance. The columns “approved”, and “failed” refer to the grouping of  re-
sponses from the categories previously made during the correlation analysis according to the aca-
demic performance of  the students. In this way, the column “approved” refers to the number of  re-
sponses from students who successfully completed the programming course, “failed” represents the 
number of  responses from students who did not meet the requirements of  the course, and “total” 
indicates the total number of  responses from students independently of  their academic performance. 
The total sum of  references in the table does not correspond to the total number of  responses con-
sidered, as each basic unit of  analysis may be labeled with more than one code, category, or theme. 
The following categories and codes were assigned: 

1. Test cases: References from students highlighting that test cases integrated in the platform 
help to obtain feedback on the submitted program and identify errors. 

2. Formative tips: Mentions of  the usefulness of  the formative feedback offered by the plat-
form, which provides suggestions about the code construction process in terms of  syntax, 
semantics, efficiency, and maintainability aspects. 

3. Knowing the errors: References on how the platform feedback allows students to identify 
specific errors in the programs built, facilitating the correction and refinement process of  
the designed solution. 
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4. Online availability: Benefit for students of  the platform working through a web browser, as 
opposed to programs running in local environments, generating a learning environment 
where the knowledge acquired can be tested outside the classroom space. 

5. Workspace: Platform offers a specific space for the organization of  activities, work, and de-
velopments made in the course, as a positive aspect. 

6. Ease of  use: Perceptions about the simplicity of  the platform’s operation, including the con-
venience of  building and modifying programs directly from the platform. 

7. Programming languages: References to UNCode’s functionality for selecting various pro-
gramming languages such as Python, C++, and Java. 

8. Constant practice: Mentions of  how the platform allows frequent exercise practice, allowing 
students to strengthen and consolidate the knowledge acquired in class. 

9. Custom input: Mentions to the tool that allows performing customized tests by the students. 
10. Linter: References to the tool for highlighting syntactic errors and source code style. 
11. Python Tutor: Tool integrated into the platform that allows step-by-step visualization of  the 

execution of  the programs. 
12. Autonomous learning: Mentions of  how the platform allows students to expand their 

knowledge and skills in programming without requiring the direct intervention of  the 
teacher or instructor. 

13. Stimulating exercises: Category containing references where UNCode programming prob-
lems are characterized as exercises sufficiently demanding to test and strengthen acquired 
skills and knowledge, without demotivating students due to the level of  difficulty. 

14. Optimized evaluation: Category assigned to the mentions on how the platform makes the 
evaluation of  the codes submitted by the students much simpler, faster, and more objective. 
The following four codes are identified in this category: immediate grading, including opin-
ions highlighting the immediacy of  the grading, offered by the platform, of  the solutions 
sent in the course activities; objective grading, which mentions the objectivity of  the grading 
obtained in the platform, since the subjectivity of  a manual grader is avoided; problem and 
exercise approach, including mentions on how the platform simplifies the construction of  
exercises, facilitating the understanding of  the context and instructions of  the programming 
problems posed; and submission of  academic activities, grouping opinions on how the plat-
form simplifies the process of  uploading and submitting solutions to the exercises.  

15. Programming skills: Category that contains references on how the use of  the platform fa-
vors the development of  computer programming skills, which transcend from the technical 
handling of  programming tools or languages to relevant long-term skills. Among the skills 
mentioned by the students, algorithmic thinking, and the understanding of  programming 
logic as a sequential and systematic process stand out.  

16. Problem-solving: Category assigned to mentions the development of  skills to find the de-
sired solution of  computer programming exercises, by means of  verification tests together 
with the comparison of  the solution obtained with expected results. 

17. UNCode general failures: Category that contains the references about the problematic as-
pects of  the platform that can interfere with the learning process of  the students. The fol-
lowing codes are identified within this category (this enumeration is in accordance with the 
one made in Table 5): (7) Inefficient grading: Reports on errors or inconsistencies between 
the numerical rating obtained and the quality of  the constructed program. (8) Failures in test 
cases: Reports on the incorrect execution of  the test cases of  the exercises presented in the 
platform, which does not allow students to obtain formative feedback in an effective man-
ner. (9) Tools unavailable: Perceptions about how failures in the functioning of  the platform 
tools, hinder the construction and correction of  the code. (10) Incompatibility: Mentions of  
incompatibility of  programs developed in UNCode with other code verification platforms. 
(11) Loss of  information: Reports about occasional loss of  information within the platform. 
(12) Platform down: Opinions where the failure of  the platform servers is identified as the 
main inconvenience, preventing student access. (13) Registration: Perceptions about lack of  
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clarity and inconveniences in the registration process as a user to use the platform. (14) Pro-
cessing speed: Mentions about significant delays in the processing of  the files uploaded by 
the students to the platform. (15) Visualization: Reports on failures in the visualization inter-
face of  both the executed program and the test cases, which do not allow the acquisition of  
relevant information for the learning process.  

18. Inflexibility of  the validations: Category assigned mentions the excessive rigorousness of  the 
platform when validating the solutions built by the students. Specifically, it refers to cases 
where the platform qualifies as incorrect some programs that meet the objective of  the exer-
cise but have minor errors of  form.  

19. Failure in educational objective: Category containing perceptions that state that the platform 
is not a meaningful tool for the process of  learning and acquiring programming skills.  

20. Insufficient feedback: Category assigned to mentions the insufficiency in objectivity and de-
tail of  the platform feedback. In this sense, some students mention having a perspective of  
UNCode as a confusing and unreliable tool. 

21. Replaceable tool: Category containing references to the possibility of  replacing UNCode’s 
functionalities with other available tools or programs, which may even fulfill the platform’s 
objectives more effectively.  

Table 5. Number of  units of  analysis grouped by 
codes, categories, and themes of  the learning process question 

THEME CATEGORY CODE 
UNIT OF ANALYSIS 

Approved Failed Total 
Platform  
Environment   13 1 14 

Benefits of  the 
Platform 

  6 0 6 

Test cases  9 1 10 

Formative tips 
 21 0 21 
Guides implementable 
improvements 13 0 13 

Knowing the errors  80 2 82 

Online availability  8 1 9 

Workspace  4 0 4 

Ease of  use 
 32 0 32 
Ease of  writing and correcting 
code 13 0 13 

Programming languages  5 0 5 

Constant practice  17 3 20 

UNCode 
Tools 

  33 0 33 

Custom input  30 1 31 

Linter  29 0 29 

Python Tutor  69 4 73 

Pedagogical  
Achievements 

  1 0 1 

Autonomous learning  13 0 13 

Stimulating exercises  39 1 40 

Optimized evaluation 
 10 0 10 

Immediate grading                              22 0 22 
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THEME CATEGORY CODE 
UNIT OF ANALYSIS 

Approved Failed Total 

Objective grading 15 0 15 

Problem and exercise approach 15 0 15 
Submission of  academic 
activities 26 5 31 

Programming skills  30 2 32 

Problem solving  66 1 67 

Areas of  
improvement 
for 
programming 
learning 

UNCode general failures 

 45 0 45 

Inefficient grading 4 0 4 

Failures in test cases 5 0 5 

Tools unavailable 6 1 7 

Incompatibility 5 0 5 

Loss of  information 3 0 3 

Platform down 14 2 16 

Registration 0 1 1 

Processing speed 5 2 7 

Visualization 5 1 6 

Inflexibility of  the validations  13 2 15 

Failure in educational objective  6 5 11 

Insufficient feedback  10 1 11 

Replaceable tool  1 1 2 

Automatic grading question 
A total of  4 themes, 8 categories, and 7 codes were generated in response to the question regarding 
the platform’s usefulness for automatic grading of  student solutions. Table 6 presents the number of  
units of  analysis grouped by code, category, and general topic, and classified by academic perfor-
mance. The following categories and codes were assigned: 

1. Teacher Involvement: Category assigned to units where students recommend that teachers 
be included in the platform use, specifically in the academic performance evaluation process.  

2. Little use of  the platform: Category assigned to a few units that report insufficient experi-
ence with the platform, as it is possible that few activities have been developed with UN-
Code in some groups. 

3. Autonomous Learning: Category assigned to units that highlight the platform’s ability to 
promote student learning with minimal intervention from the teacher or monitor. The defi-
nition of  this category is homologous to that established in the question related to the learn-
ing process. However, differences are evident with respect to the identified codes, which al-
lows identifying a greater number of  components that contribute to autonomous learning. 
Firstly, a group of  references is identified where it is stated that the use of  the platform al-
lows students to self-assess their level of  knowledge and skills in the subject, which are 
grouped with the Code of  Evaluation Skills. Secondly, there is Formative Feedback, which 
refers to the provision of  quality information to identify errors, improve, and evaluate the 
quality of  programs developed by students. Finally, there is Grade Tracking, where students 
highlight UNCode tools that allow statistical control of  the grades obtained during the se-
mester in the activities carried out. 



Chaparro Amaya, Restrepo-Calle, & Ramírez-Echeverry 

361 

4. Optimized evaluation: Category where references related to the characteristics and aspects 
of  the platform that allow for effective and appropriate evaluation of  the solutions proposed 
by students are grouped. The codes generated within the category correspond to Immediate 
grading, Objective grading, and Immediate feedback.  

5. Validation failures: Category assigned to comments that report errors in the validation pro-
cess of  developed programs, as they are marked as wrong despite meeting exercise require-
ments. Some students specify that the grading and evaluation criteria applied by the platform 
are too strict and inflexible, ignoring small writing errors and semantics, and resulting in 
poor grades. These references are grouped with the code Inflexibility in checks. 

6. General failures: Category assigned to responses where platform failures and problems are 
highlighted during use. The definition of  this category is similar to the UNCode general fail-
ure category in the question related to the learning process. However, the errors reported in 
this question tend to be less specific.  

7. Incomprehensible: References that highlight difficulties in clearly understanding the purpose 
of  automatic grading, specifically its functionality or the information it generates.  

8. Insufficient Feedback: References that state that the information provided to students when 
submitting a solution lacks content and explanation, which does not allow for a full under-
standing of  the provided feedback.  

Table 6. Number of  units of  analysis grouped by 
codes, categories and themes of  the automatic grading question 

THEME CATEGORY CODE 
UNIT OF ANALYSIS 

Approved Failed Total 

Implementation 
difficulties 

  3  0 3 

Teacher involvement  3 0 3 

Little use of  the platform  2 0 2 

Ease of  use   5 0 5 

Pedagogical 
achievements 

Autonomous learning 

Evaluation of  skills 7 0 7 

Formative feedback 63 1 64 

Grade Tracking 7 0 7 

Optimized evaluation 

 19 0 19 

Immediate grading 73 2 75 

Objective grading 71 6 77 

Immediate feedback 22 1 23 

Areas of  
improvement for 
automatic 
grading 

Validation failures 
 20 0 20 

Inflexibility in checks 20 3 23 

General failures  12 0 12 

Incomprehensible  3 0 3 

Insufficient feedback  2 1 3 

Feedback question 
Regarding the question on the platform’s usefulness for providing automatic feedback on student so-
lutions, a total of  4 themes, 5 categories, and 3 codes were identified. Table 7 shows the number of  
units of  analysis grouped by code, category, and general theme, and classified by academic perfor-
mance. The categories and codes assigned were: 
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1. Hidden test cases: Units that highlight instances where the difference between the obtained 
and expected results is not visible, making it difficult for students to identify errors. 

2. Insufficient guidance: Units where it is highlighted that the feedback obtained is not suffi-
cient, since in some cases the information acquired does not allow to specifically identify er-
rors or the way to correct the program. Some causes of  this include minor errors that go un-
noticed by the platform and lack of  clarity in explanations and instructions. The conse-
quence implies an autonomous obligation in the process of  correcting the developed pro-
grams by the students. 

3. Comparison with expected outputs: Units that reference the usefulness of  comparing the 
output generated by the student’s program with the expected output to identify errors and 
correction strategies. 

4. Correcting errors: Units where students affirm that clear identification of  errors in their 
code is crucial to understanding the type of  mistake made and the most appropriate correc-
tion strategies. 

5. Specific feedback: Units where feedback generated by the platform is described as highly de-
tailed and specific, aiding in timely problem-solving in programming. 

Table 7. Number of  units of  analysis grouped by 
codes, categories, and themes of  the feedback question 

THEME CATEGORY CODE 
UNIT OF ANALYSIS 

Approved Failed Total 
Clear initial 
conditions   6 2 8 

Areas of  
improvement in 
feedback 

  2 0 1 

Hidden test cases  12 0 12 

Insufficient guidance  35 0 35 

 Minor details 7 2 9 

 Lack of  clarity 47 3 50 

 Autonomous error 
identification 12 0 12 

Problem solving 

  157 0 157 
Comparison with expected 
outputs  33 2 35 

Correcting errors  51 3 54 

Specific feedback  60 2 62 

Pointing out errors   89 3 92 
 
During the axial coding stage, categories were grouped into general themes for each of  the three ques-
tions, as can be seen from Tables 5 to 7 (first column). For the learning process question, five general 
themes were generated including platform environment, benefits of  the platform, UNCode tools, 
pedagogical achievements, and areas for improvement. For the automatic grading question, four gen-
eral themes were generated including implementation difficulties, ease of  use, pedagogical achieve-
ments, and areas for improvement. For the feedback question, four general themes were generated 
including clear initial conditions, areas for improvement in feedback, problem-solving, and pointing 
out errors. The categories with the highest number of  records were identified for each general theme, 
indicating areas where students had the most positive or negative perceptions of  the platform. Over-
all, the findings suggest that the platform is useful for learning computer programming, but there are 
areas for improvement in terms of  teacher support, clarity of  feedback, and the operation of  the 
platform.  
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DATA ANALYSIS AND RESULTS 
Based on the results of  the open and axial coding, the selective coding stage was carried out. First, it is 
found that the UNCode toolset, especially Python tutor, Custom input, and Linter, is the practical 
basis of  the benefits of  the platform. In other words, the strengths, and possibilities of  UNCode that 
contribute to the learning of  computer programming are represented through the platform’s own 
options. These benefits allow students to obtain pedagogical achievements that students believe are 
achieved due to the use of  UNCode. These pedagogical achievements can be divided into three 
groups: development of  programming skills, autonomous learning, and optimized evaluation. 

There is a reciprocal association between the first two achievements. By promoting the development 
of  important programming skills, students acquire capabilities, knowledge, and confidence, which 
fosters learning processes with little or no intervention from teachers and assistants. UNCode pro-
vides students with the means to enhance their programming abilities. The platform’s Python tutor 
tool, for instance, offers a practical environment for practical coding by means of  interactive visuali-
zations. This hands-on experience helps students improve their understanding of  programming prin-
ciples and techniques. Additionally, autonomy in learning allows students to consolidate knowledge 
such as logical thinking and program construction. By allowing students to independently explore 
programming concepts and experiment with coding, the platform enables them to develop their 
problem-solving skills and gain a deeper understanding of  how to construct effective programs. The 
third academic achievement relates to the optimization of  the evaluation of  the programs submitted 
by students and is represented in two aspects: (1) the simplification of  the process of  submission of  
course activities, and (2) the objectivity and speed in the grading of  the solution submitted by the stu-
dent. The objective and immediate grading has become a distinctive feature of  UNCode, providing 
reliability and efficiency to the operation of  the platform.  

However, there are also aspects that could be improved, which can significantly affect and hinder the 
student’s experience, deteriorating the overall perception and assessment of  UNCode. General mal-
functions, such as platform crashes when there is a high volume of  users connected concurrently, can 
directly hinder participation in academic activities, affecting the optimization of  evaluation, identified 
as the platform’s benefit. Another aspect to improve is the perceived inadequacy of  the guidance of-
fered by UNCode. The lack of  information or clarity in the feedback can hinder or slow down the 
processes of  autonomous learning. In some cases, insufficient instruction may compromise students’ 
ability to solve programming problems as they do not obtain sufficient information to identify strate-
gies to solve errors. The third aspect to improve is the inflexibility in the validation process. If  the 
platform rates programs as erroneous despite meeting exercise requirements but having minor errors, 
it can create a sense of  failure among students. This perception of  harsh grading may discourage 
learners and undermine their confidence, even when they have made significant progress in their pro-
gramming skills. Improving these aspects can enhance the student experience and address potential 
barriers to effective learning. Ensuring platform stability, providing clear and informative feedback, 
and adopting a more flexible validation process that recognizes and acknowledges students’ efforts 
would contribute to a more positive and supportive learning environment within UNCode. 

Finally, a systematic comparison was made between the responses of  those who approved (passed) 
the course and those who did not (failed). This was aimed at evaluating the hypothesis about the ef-
fect of  passing or failing the course on the perception of  the use of  UNCode. However, no differ-
ences attributable to belonging to either group were found in any of  the themes, categories, or codes. 
At first, it could be stated that the difference between groups is not evident, due to the imbalance in 
the number of  members of  each group, but it can be observed that at the discursive level, there are 
no substantial differences either. Therefore, it can be concluded that the perception and valuation of  
the platform appear to be independent of  the course outcome, suggesting that factors other than 
course performance influence how students perceive and evaluate UNCode. 
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PROPOSAL APPLICATION: DISCUSSION 

INTEGRATION OF PHASES 
The integration of  phases stage consisted of  analyzing together significant correlations results presented 
in the quantitative data analysis phase with content analysis results described in the qualitative data 
analysis phase. The measures and metrics can be divided into five categories according to the type of  
data they represent: obtained verdicts, solution attempts, tool usage, closed questions in the percep-
tion questionnaire, and software metrics.  

The study found that the feedback generated by verdicts has a positive effect on students’ learning 
process. Students obtained relevant information through verdicts that helped them know errors and 
develop programming problem-solving skills and promote autonomous learning. They perceived the 
UNCode platform as an objective and efficient tool for validating constructed programs. Positive 
correlations between verdicts and academic performance can also be linked to other platforms’ bene-
fits, such as formative tips, constant practice, and ease of  use. Regarding automatic grading, error 
verdicts correlated with academic performance may be linked to some platform’s pedagogical 
achievements such as objective grading, immediate grading, and formative and immediate feedback.  

Areas of  improvement identified in the qualitative phase include minor syntax details, lack of  clarity 
and insufficient guidance, malfunctioning, inflexibility, insufficient feedback, incomprehensible, and 
validation failure. These categories are similar across different questions and are related to incorrect 
responses due to minor formatting errors, incomplete or not useful verdicts, and visualization and 
test case execution issues. Moreover, it is important to consider that these areas for improvement 
identified through the qualitative analysis can inform the development of  new metrics to be consid-
ered in the quantitative analysis of  future studies that capture aspects that may influence or hinder 
the user experience in a timely manner. 

We also analyzed the relation between the number of  solution attempts made by students and various 
factors of  the UNCode platform. The results showed a positive correlation between the total num-
ber of  attempts made and the academic performance of  students. This might be related to the plat-
form’s benefits identified by students such as the possibility to practice constantly, online availability, 
stimulating exercises, workspace, and ease of  use. Students who perceived UNCode as an easy-to-use 
tool tended to use the platform actively by sending a high number of  solutions. The platform’s con-
stant availability also generated an exclusive workspace for the student, which allowed for constant 
practice of  exercises even outside of  class, resulting in a high number of  registered attempts. How-
ever, the study also identified aspects that some students considered should be improved within the 
platform, which negatively affected the number of  solutions sent. For example, general failures, in-
flexibility of  the validations, and insufficient feedback were identified as obstacles to sending solu-
tions. Incompatibility with programs developed in other external development environments meant 
that students opted for external tools for program development, evaluation, and correction, and used 
UNCode only to submit the final program, which limited the number of  attempts registered in UN-
Code.  

Regarding the tool usage and the correlation between it and students’ academic performance, seven 
measures show a significant correlation with student performance, with custom input rate having a 
positive correlation while the rest have a negative correlation. The rate of  custom input usage might 
be related to the references of  custom input in the questionnaire; this indicates that students who 
perceive the option to evaluate programs built with custom tests as a useful tool tend to prefer to use 
this tool, as they have the skills to design tests to debug the proposed solution and obtain good aca-
demic performance. However, the negative correlation found for the other tools and academic per-
formance is opposed to results found in the qualitative analysis, where we found positive students' 
perceptions with respect to UNCode tools, especially those related to Python tutor and Linter.  
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The quantitative phase of  the study also shows that some students’ responses to the closed-ended 
perception questions in the questionnaire have a significant positive correlation with their academic 
performance. Specifically, the questions related to the usefulness of  UNCode in the learning process, 
automatic grading, and feedback all had positive correlations. The qualitative phase supports these 
findings, as most students identified the positive aspects of  the platform in their open-ended re-
sponses. In particular, more than half  of  the surveyed students recognized the benefits of  using UN-
Code in programming learning, pedagogical achievements, and promoting problem-solving. The use 
of  custom input, identified as a tool in the learning process question, also had a significant positive 
correlation with academic performance. 

In the final analysis of  the software metrics, the quantitative phase showed that three metrics – token 
count, lines of  code, and cyclomatic complexity – had a positive correlation with academic perfor-
mance, while the maintainability index (MI) had a negative correlation. It is possible that this positive 
correlation is due to students who developed longer programs in terms of  tokens, lines of  code, and 
the number of  possible paths within the program execution. However, the findings from the qualita-
tive analysis did not provide such technical details in relation to software metrics, making it difficult 
to integrate them with the quantitative results. 

INTERPRETATION  
The research question of  this proposal application on how mixed research methods applied in learn-
ing analytics can enhance the understanding of  the relationships between variables generated 
throughout the learning process and the academic performance of  students in computer program-
ming can be answered through the integrated results summarized below. 

Our findings suggest that students’ academic performance is positively correlated with the number 
of  accepted programs (correct responses), success rate, the amount of  exceeded memory limit er-
rors, compilation errors, verdicts, and exceeded time limit rates. Considering the perceptions about 
the platform as a source of  formative feedback, it is possible to conclude that these verdicts not only 
permitted students to identify errors but also provided guidance for correcting the constructed pro-
gram, which generated problem-solving skills and autonomous learning. This indicates that students 
possibly acquire sufficient knowledge to successfully solve course activities, which is reflected posi-
tively in academic performance. These results support previous research findings that the accumu-
lated percentage of  correct exercises has a significant correlation coefficient of  0.67 with student aca-
demic performance (Azcona et al., 2019). Additionally, our study found that the positive correlation 
of  the number of  incorrect responses (Wrong_Answer) might be related to test case references and 
comparison with expected outputs, indicating that the use of  standardized tests for automatic pro-
gram evaluation is effective as formative feedback, benefiting student academic performance. 

Regarding the use of  UNCode’s tools, despite the negative results found in the correlation analysis 
regarding academic performance, these negative correlations are refuted by references in the ques-
tionnaire responses that identify Python tutor, custom input, and linter as contributing elements 
within the platform and as benefits of  the platform. These results are also in line with previous find-
ings of  studies conducted by Restrepo-Calle et al. (2020) and Ramírez-Echeverry et al. (2022), where 
students’ perceptions of  UNCode’s use as a learning support platform were also analyzed. Within 
these investigations, it is evident that students recognize the visualization tool of  code execution (Py-
thon tutor) as an added value of  the platform, which is associated with the identification and correc-
tion of  errors. Additionally, students highlight the tools for verification of  good programming prac-
tices (Linter) and tests with customized inputs (Custom input). Moreover, the use of  user statistics 
has a non-significant correlation, which is consistent with research conducted by Zacharis (2015), and 
Macfadyen and Dawson (2010), where the number of  accesses to the grading tool does not show a 
significant correlation with the grade. This result can be related to a small percentage of  responses 
that indicate monitoring grades as part of  their pedagogical achievements, suggesting that the 
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majority of  students is not aware of  monitoring their academic achievements and therefore has no 
noticeable impact on the learning process. 

Furthermore, the total number of  attempts made by students has a positive correlation with their fi-
nal grade, which can be attributed to positive aspects perceived by students, such as stimulating exer-
cises, ease of  use, constant practice, online availability, workspace, and platform environment. The 
relationship between these results suggests that high-performing students may use the platform as a 
source of  feedback to improve their solutions by making multiple attempts at the same activity. The 
platform provides a workspace that facilitates the presentation of  academic activities, is user-friendly, 
allows for the creation of  stimulating exercises, and encourages constant practice since it is available 
even outside the classroom. This result is consistent with Zacharis’ (2015) research, which found a 
positive correlation (0.2 to 0.39) between the number of  activities submitted during the course and 
the final grade. 

Moreover, the positive correlation of  time between attempts can be associated with the group of  stu-
dents who highlight the immediate feedback and the writing and correction aspect as positive charac-
teristics of  UNCode. These results are consistent with the findings of  Andergassen et al. (2014), who 
obtained a positive correlation of  0.18 between the average time difference between repetitions (i.e., 
attempts) of  exercises and the final exam grade. These results indicate that due to the speed of  the 
evaluation process on the platform, students with good academic performance possibly invest most 
of  their time in building and correcting the solution between each submission. Another of  the results 
obtained is the positive correlations of  perceptions in the three closed questions (QUESTION: 
Learning process, QUESTION: Automatic grading, and QUESTION: Feedback), which are corrob-
orated by the answers to the open questions, where most students identify pedagogical achievements 
and the benefits of  the platform. This probably indicates that users who have a positive experience 
with the platform tend to identify and take advantage of  its benefits, achieving good academic per-
formance. 

Our findings of  a positive correlation between academic performance and the cyclomatic complexity 
metric contradict the results of  Vahdat et al. (2015), which found a negative correlation between the 
two variables. Furthermore, previous works in this context have shown no significant correlation be-
tween these variables (Castellanos et al., 2017). Therefore, it is necessary to further explore these rela-
tionships to improve our understanding of  this situation.  

The results of  this research provide insights into how automatic formative feedback can be beneficial 
to the learning process for students. Nevertheless, some students highlight that this type of  feedback 
needs to be complemented with instructor guidance to achieve their objectives. Furthermore, allow-
ing students to design personalized tests appears to be a useful approach for constructing correct so-
lutions. The study also found that high-scoring students tend to make the most attempts and use the 
majority of  their time correcting their programs. Additionally, it emphasizes the importance of  en-
suring that students understand the platform’s utility in the class methodology to increase the likeli-
hood that they will take advantage of  the tool and improve their academic performance. 

In terms of  answering the research question posed, the results obtained show that the use of  mixed 
methods allows the results of  the quantitative phase to be complemented by observations from the 
qualitative phase. In this sense, in most cases, the qualitative data, which correspond to the students’ 
perceptions, corroborate, and expand upon the results of  the quantitative data. The agreement be-
tween the results of  both phases allows for generating several hypotheses about the underlying rea-
sons for the observed behaviors and the learning processes of  the students, which are based on both 
quantitative and qualitative results. In other cases, the mixed approach reveals contradictions between 
the results of  both phases (e.g., results of  tool use), which allows for identifying topics of  interest be-
yond the scope of  the research and generating new questions that can be addressed in future works. 
In other words, the application of  the framework presented in this paper demonstrated that a mixed 
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methods approach to understanding the study question was superior to the use of  a quantitative 
methodology alone. 

Finally, it is worth noting that the application of  the framework presented has some limitations, such 
as an imbalance in the dataset used in both the quantitative and qualitative phases. Specifically, the 
number of  students with grades above the minimum passing grade is much higher than the number 
of  students who fail the course, which could affect the magnitude of  the correlations obtained differ-
entiated by passing and failing categories. Moreover, there is a limitation associated with the high dis-
persion of  the data on the total number of  attempts made and the average time between attempts, 
due to the variety of  activities carried out in the different groups of  the programming course. Some 
instructors propose more hands-on workshops, reinforcement exercises, or projects with flexible 
deadlines, while others focus on assessing students’ knowledge through short tests and exams, which 
usually have a limited time frame. This means that the behaviors and strategies that students use dur-
ing their learning process can vary significantly depending on the type of  activity they are exposed to. 
Finally, the students provided suggestions for improving the formative feedback, which should be 
considered to enhance the functionality and usability of  the tool. 

HYPOTHESIS GENERATION 
Based on the integration of  results from both phases of  the mixed methods approach used in the 
research and their interpretation, ideas for possible future work arise that can expand the discoveries 
of  the current study. Firstly, it is possible to hypothesize that UNCode as a course tool may have a 
significant impact on the average final grades of  students using the tool, particularly in a program-
ming course. A comparative analysis between students using the UNCode platform and those en-
rolled in a similar course where the platform is not used could validate this hypothesis. To investigate 
this further, a quasi-experimental study design could be implemented with an experimental group 
consisting of  students who use the tool and a control group consisting of  students who do not use 
the tool.  

On the other hand, the significant correlations evidenced can promote the design and execution of  
educational interventions within the course, corresponding to the final stage of  the cyclic learning 
analytics methodology proposed by Carter et al. (2019). The development of  interventions consists 
of  making decisions in the studied educational context, where information, guidance, or feedback is 
shared with the students with the aim of  positively influencing their behavior (Carter et al., 2019). In 
this context, it is plausible to hypothesize that an intervention designed to increase the visibility of  
error verdict descriptions, accompanied by additional instructions for error correction, could signifi-
cantly improve the perceptions of  students who perceive the feedback they receive as insufficient. 
Furthermore, suggesting the use of  specific tools based on their functionality, such as recommending 
the use of  Python Tutor to address runtime execution errors, may effectively encourage students to 
engage with platform tools, resulting in improved perceptions of  the feedback process and possibly 
even improved academic performance. The impact of  these interventions can also be evaluated 
through an experimental design that seeks statistical differences between a group that implements 
one of  the interventions and a control group.  

In the context of  introductory programming education, AI/large language models have the potential 
to revolutionize teaching by enhancing the learning experience, providing personalized support, and 
enabling more efficient assessment and feedback mechanisms. Future research in this area is to im-
plement the proposed framework on data from an introductory programming course using these 
models. 

CONCLUSIONS AND FUTURE WORKS 
This article proposes a sequential explanatory mixed-methods design for learning analytics, consisting 
of  three main phases: (1) preparation, transformation, and analysis of  quantitative data; (2) collection 
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and content analysis of  qualitative data; and (3) integration of  results from both phases and discus-
sion/interpretation of  the findings. This framework was applied to historical quantitative and qualita-
tive data from students’ use of  an automated feedback and evaluation platform for programming ex-
ercises in a programming course at the National University of  Colombia. The answer to the research 
question posed corresponds to the fact that the results obtained demonstrate that the mixed methods 
effectively complement quantitative and qualitative data. Qualitative data, representing students’ per-
ceptions, generally support and extend the quantitative data. The consistency between the two phases 
allows hypotheses to be generated about student behavior and learning processes based on both 
types of  data.  

Specifically, the relationship between students’ use of  the programming tool and their academic per-
formance was examined. Results indicate that students who expressed the highest level of  agreement 
with the tool’s usefulness for learning and who appreciated the ability to automatically evaluate their 
programs and receive feedback (qualitative data) tended to have better academic performance (quan-
titative data). This suggests that the formative feedback allowed students to identify errors and pro-
vided guidance for correcting the constructed program, which generated problem-solving skills and 
autonomous learning that enabled students to successfully complete course activities, which was pos-
itively reflected in academic performance. In addition, students who emphasized the benefits of  the 
tool (qualitative data) achieved better academic performance (quantitative data). First, they found it 
valuable for identifying errors in their programs and providing corrective feedback. Second, the tool 
gave them the opportunity to practice programming autonomously and develop their problem-solv-
ing skills. The exercises provided were found to be challenging and stimulating, which motivated the 
students to learn and increased their curiosity. Students also appreciated the tool’s objective and im-
mediate grading system. All of  this suggests that users who have a positive experience with the plat-
form are more likely to recognize and take advantage of  its benefits and achieve good academic per-
formance.  

The main contribution of  this work is the proposed methodological framework for the application 
of  learning analytics in computer programming courses, which is based on mixed methods and speci-
fies activities from data collection, both quantitative and qualitative, to results integration and discus-
sion. It is worth noting that the methodological activities are described in a general manner, provid-
ing a reference for future research in similar contexts. The use of  mixed methods allows for the com-
plementation, corroboration, or refutation of  quantitatively evidenced results with qualitative data, 
and the generation of  hypotheses about possible causes or explanations of  students’ behaviors. Spe-
cifically, the framework used in this approach helped to formulate hypotheses that describe different 
aspects of  the learning processes that occur in a computer programming educational environment. 
Based on these hypotheses, several future research projects and works were proposed.  

Although a limitation of  the presented study is that the framework was only demonstrated in the 
context of  its use for learning computer programming, we suggest that future research implement 
the proposed framework in different educational contexts and populations to strengthen the ob-
tained results, complement the proposed methodology, or address identified issues. Potential lines of  
research to continue this work include (1) implementing the proposed mixed-method learning analyt-
ics methodology on a different population sample, such as students from other universities; (2) using 
techniques to correct unbalanced data sets, such as fine-tuning algorithms, resampling, or random 
over/under sampling in learning analytics studies; (3) analyzing students’ interactions with the UN-
Code platform and their academic activities, such as exams, quizzes, workshops, projects, and assign-
ments, in correlation with their activity grades rather than their final course grade; and (4) using the 
findings on students’ behaviors and perceptions of  the UNCode platform to design interventions 
that positively affect their academic performance, with an experimental design to statistically evaluate 
the effect. 
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