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ABSTRACT 
Aim/Purpose This paper is part of a multi-case study that aims to test whether generative AI 

makes an effective coding assistant. Particularly, this work evaluates the ability 
of two AI chatbots (ChatGPT and Bing Chat) to generate concise computer 
code, considers ethical issues related to generative AI, and offers suggestions 
for how to improve the technology. 

Background Since the release of ChatGPT in 2022, generative artificial intelligence has 
steadily gained wide use in software development. However, there is conflicting 
information on the extent to which AI helps developers be more productive in 
the long term. Also, whether using generated code violates copyright 
restrictions is a matter of debate. 

Methodology ChatGPT and Bing Chat were asked the same question, their responses were 
recorded, and the percentage of each chatbot’s code that was extraneous was 
calculated. Also examined were qualitative factors, such as how often the gener-
ated code required modifications before it would run. 

Contribution This paper adds to the limited body of research on how effective generative AI 
is at aiding software developers and how to practically address its shortcomings. 

Findings Results of AI testing observed that 0.7% of lines and 1.4% of characters in 
ChatGPT’s responses were extraneous, while 0.7% of lines and 1.1% of charac-
ters in Bing Chat’s responses were extraneous. This was well below the 2% 
threshold, meaning both chatbots can generate concise code. However, code 
from both chatbots frequently had to be modified before it would work; 
ChatGPT’s code needed major modifications 30% of the time and minor ones 
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50% of the time, while Bing Chat’s code needed major modifications 10% of 
the time and minor ones 70% of the time. 

Recommendations  
for Practitioners 

Companies building generative AI solutions are encouraged to use this study’s 
findings to improve their models, specifically by decreasing error rates, adding 
more training data for programming languages with less public documentation, 
and implementing a mechanism that checks code for syntactical errors. Devel-
opers can use the findings to increase their productivity, learning how to reap 
generative AI’s full potential while being aware of its limitations. 

Recommendations  
for Researchers  

Researchers are encouraged to continue where this paper left off, exploring 
more programming languages and prompting styles than the scope of this study 
allowed. 

Impact on Society As artificial intelligence touches more areas of society than ever, it is crucial to 
make AI models as accurate and dependable as possible. If practitioners and re-
searchers use the findings of this paper to improve coders’ experience with gen-
erative AI, it will make millions of developers more productive, saving their 
companies money and time. 

Future Research The results of this study can be strengthened (or refuted) by a future study with 
a large, diverse dataset that more fully represents the programming languages 
and prompting styles developers tend to use. Moreover, further research can ex-
amine the reasons generative AI fails to deliver working code, which will yield 
valuable insights into improving these models. 

Keywords artificial intelligence, Bing Chat, ChatGPT, code modifications, concise code, 
ethics, programming assistants 

INTRODUCTION 
Since the invention of high-level programming languages, software has become increasingly powerful 
and sophisticated. Today, it is not uncommon for a single application to consume gigabytes of ran-
dom access memory and utilize several processor cores at once. As programs continue to get more 
complex, new technologies assist developers so they can complete their jobs more efficiently and 
spend less time debugging code. One such technology is generative artificial intelligence, which is still 
in its beginning stages but already showing immense potential to empower developers so they can 
work more productively than ever. 

Nevertheless, generative AI frequently falls short. Many developers have expressed frustration when 
it fails to produce a satisfactory result (Zhou et al., 2023). There are also concerns that code gener-
ated by GitHub Copilot and similar tools may contain security vulnerabilities (Perry et al., 2023). Ad-
ditionally, there have been lawsuits against AI companies because their chatbots often eject copy-
righted code line-for-line without giving credit to the programmers who wrote it (Caballar, 2022; 
Samuelson, 2023). 

There are countless research papers on the topic of generative AI. Some are theoretical in nature, de-
scribing what AI is (or may soon be) capable of. Others look at how developers are using AI to do 
their jobs. Still, others focus on the shortcomings of present AI models. However, none was found 
to address all three research goals of this paper adequately: whether generative AI is useful to pro-
grammers, how the technology can be improved, and how ethical issues shape the AI landscape. 

The paper highlights a single case as part of a larger multi-case project aiming to answer the research 
question: “Does AI make a good coding assistant?” In the project, students developed software for a 
remote client who wanted to automate the process of finding and replacing names of characters in 
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children’s books for custom names. They wrote this application with the help of AI assistants. Ten 
projects were designed in parallel, with punctuated feedback from the client during the initial design 
and testing phases. Students collected data throughout the project to determine the value of AI as a 
coding assistant, each person studying a unique metric that contributed to that end. 

This paper examines the effectiveness of generative AI in producing concise computer code. Particu-
larly, it compares ChatGPT’s and Bing Chat’s ability to generate concise code, along with the number 
of tries it takes to get a working program and whether the code requires modifications to run. 

The paper will begin by defining important terms used in this study. Then, it will state the research 
question, hypotheses, and objectives of the study. Next, it will explore existing literature on genera-
tive AI in software production. After that, the methodology used to test the hypothesis will be laid 
out, followed by the data collected and the analysis of that data. Finally, it will investigate ethical con-
siderations of AI code generation and conclude with the implications of this study’s findings. At the 
very end are two appendices containing raw data from the collection and analysis stages. 

DEFINITIONS 
1. Chatbots refer to the two generative AI models assessed in this study, namely ChatGPT and 

Bing Chat. 

2. Concise code means computer code that contains few to no extraneous lines or characters. 
Since programming styles vary, concise code does not necessarily entail the shortest code 
possible; rather, it implies that the code cannot be made shorter within the same style. 

3. Extraneous code consists of unused imports and variables, trailing whitespace, and any 
lines or sections that can be made shorter without negatively affecting the code’s readability 
or efficiency. 

4. Generative AI encompasses all text-based large language models that can produce computer 
code in response to a natural language prompt. In some contexts, generative AI specifically 
means ChatGPT and Bing Chat, the two chatbots examined in this paper. 

5. Major modifications imply that a code sample from a generative AI model would not com-
pile or execute without significant effort to manually fix errors. For example, the code may 
depend on obsolete libraries, or the solution may not be fully implemented. 

6. Minor modifications mean that a code sample from a generative AI model either (a) would 
not execute but took little effort to manually debug or (b) contained trivial errors and did not 
produce the expected result. For instance, the chatbot may have omitted an “import” state-
ment, or parameters may be missing from a function call. 

RESEARCH HYPOTHESES AND OBJECTIVES 
This paper is one part of a multi-case study attempting to answer the question, “Does AI make a 
good coding assistant?” Readers interested in the findings of other student researchers involved in 
this multi-case study are encouraged to reach out to Dr Christine Bakke, coauthor of Bakke and Sakai 
(2022). Other students explored different research questions, including “How often does AI-gener-
ated code correctly compile and execute?” and “Can AI generate efficient computer code?” How-
ever, only some students chose to publish their results. 

This paper addresses the ability of generative AI to write concise computer code. Specifically, it eval-
uates the following research question: “Can ChatGPT and Bing Chat generate concise computer 
code better than a human developer could?” This question has two parts. First, can either of the 
chatbots outperform a human programmer in producing concise code? Second, which chatbot will 
perform better in that context: ChatGPT or Bing Chat? 
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The authors propose two hypotheses, one for each part of the research question. The first hypothesis 
is that both chatbots will write less concise code than an experienced developer could because they 
are still relatively new and under active research. If one or both chatbots consistently write code 
equally concisely compared to what a human programmer can write, then this hypothesis will be re-
jected. The second hypothesis is that Bing Chat will write concise computer code better than 
ChatGPT will because Bing employs GPT-4 and can pull content from the Internet with retrieval 
augmented generation (RAG), while the free version of ChatGPT uses GPT-3.5 and cannot access 
up-to-date web content. If there is no significant difference in quality between Bing Chat and 
ChatGPT, this hypothesis will be disproven. 

LITERATURE 
Although there are presently no peer-reviewed journal articles that cover the same ground as this 
study, numerous articles discuss generative AI in software development in general. Here are six ex-
amples: 

• Bankins et al. (2024) study artificial intelligence in the workplace. They examine five factors 
on how employees use AI and how it impacts their productivity: how humans collaborate 
with AI, how workers perceive the capabilities of AI versus what human developers can do, 
employees’ attitudes toward AI, algorithmic management in platform-based work (that is, 
having AI monitor and manage gig workers), and how utilizing AI impacts the labor market. 
Altogether, the authors consider 68 articles on those five topics. Though quite detailed, the 
paper does not address whether AI makes a good coding assistant; instead, it discusses how 
workers interact with AI. 

• Campbell (2020) describes advances in technology that lead to computers writing increas-
ingly more code. The author asserts that while artificial intelligence may never fully replace 
human developers, it is becoming involved in a greater portion of the coding process as au-
tomation tools become more capable. The paper is a combination of history and an over-
view of bleeding-edge technologies (as of 2020), so it is more theoretical in nature, unlike 
this study, which aims to be practical. 

• Ebert and Louridas (2023) look at generative AI and the benefits – along with the risks – of 
employing it in the software industry. The writers focus on the abstract concepts behind 
large language models and the features these provide to assist developers. The paper pre-
sents a summary of how generative AI works, how it can enhance productivity, and what 
precautions should be taken, but says little about what developers think about AI or how 
they are actually using it. 

• Shi et al. (2023) consider how AI, mainly GitHub Copilot, helps developers write more se-
cure code. The authors are largely optimistic, in contrast with Perry et al. (2023) and Vaidya 
and Asif (2023), who conclude that generative AI might end up introducing security vulnera-
bilities. Shi et al. (2023) focus more on how programmers can use generative AI when cod-
ing than on whether they would want to use such technology or how it could be improved. 

• Tichy (1987) discusses AI tools, including natural language processors, and how these help 
developers write complex code more quickly and efficiently. Note that this article was writ-
ten in 1987, so many of the concepts have already been implemented in the 3.5 decades 
since the paper’s publication. Thus, the paper falls short of the goal of this study – namely, 
to examine current generative AI models and determine if they are useful to programmers. 

• Vaidya and Asif (2023) warn that generative AI models like ChatGPT, being trained on a 
codebase that includes bad code as well as good, can produce highly insecure code even 
when prompted not to do so. The authors caution that unless programmers understand the 
code generated by AI, they may not be aware of the security vulnerabilities it contains. While 

Fay Sudweeks
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the paper addresses some shortfalls of generative AI, it does not inspect both sides so that 
readers can see whether AI makes a good coding assistant. 

Based on the aforementioned articles, along with many others, artificial intelligence is not yet capable 
of replicating the skills of human developers. To ensure the code is secure, humans must thoroughly 
apprehend what it does and adjust it on their own rather than blindly trusting that the AI did a satis-
factory job. However, in the hands of a programmer who knows these things and is ready to adapt 
and rewrite some or all of the code produced by AI, do tools like ChatGPT have the potential to in-
crease productivity and accelerate the software development process? That is what this paper will 
consider. 

METHODOLOGY 
PARTICIPANTS 
This study represents one researcher’s experiment as part of a multi-case study. The participants were 
computer science students taking a class that was mandatory for their major. Each student completed 
a unique case, with a shared commonality of the same initial requirements while varying with custom-
ization of project design and AI assistant selection. 

In total, there were ten college-aged researchers: nine males and one female. Each designed unique 
software for the client with the help of AI assistants. As the client (who was not digitally literate) only 
had need of the final working project, students selected coding languages they felt would be the most 
appropriate for coding and deploying the project to a remote client. Each student conducted research 
alongside the software development project, resulting in ten somewhat parallel research projects. 
Most of the researchers preferred Python, though all had varying levels of experience in other lan-
guages such as HTML/JavaScript, C++, and Java. 

In addition to human participants, the AI chatbots were also participants in this study. Effectively, 
student researchers were Scrum masters and lead programmers, while chatbots were assistant coders 
that provided programming insights and contributed to the codebase. The human developers asked 
their virtual assistants questions regarding programming concepts and requested code samples, while 
the virtual assistants did their best to help, so to speak. All final coding decisions were left to the stu-
dent researchers. 

DATA COLLECTION METHODS 
The project followed Agile methodologies designed for coding classes (see Bakke & Sakai, 2022) but 
adjusted to include a remote client. Throughout the course, as students designed their projects, the 
remote client provided initial requirements, gave feedback on the UI/UX flow designs, and partici-
pated in the final stages of testing. Since the client was often busy and because of scheduling con-
flicts, the client gave less feedback toward the middle of the project. During that time, the teacher of-
fered additional feedback to ensure students still had an Agile experience. Due to the time constraints 
of a single semester, students were given the option to complete the project based on client feedback 
through the UI/UX design or to continue adjustments into the final project testing phase. Two stu-
dents continued adjustments with the client, allowing full customization, and adjusted their design in 
the final weeks of the course, following Agile practices through the end of the class. 

To determine the value of each AI assistant, students kept track of every time that AI was queried for 
help on the project. Students were allowed to query AI as often as they wished, but all queries were 
done with both assistants, allowing for AI-to-AI comparison at the end of the project. For example, 
if one AI were asked to assist with code for file retrieval, the other AI must be asked the same query. 
The results given by both chatbots could then be compared based on specific criteria. Criteria for AI 
assistant value were determined during the initial phases of the course, with each student selecting 
their own “AI as a coding assistant value” they wished to examine. 

Fay Sudweeks
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All data were collected in the context of developing a Find & Replace application for the remote cli-
ent. As such, the students completed this research project over the course of a 15-week semester. All 
code generated by the AI chatbots contributed toward delivering an application suitable to the cli-
ent’s wishes; data collection stopped once the software was complete. 

In this multi-case study, students independently designed their Find & Replace programs. At the 
same time, they used AI assistants in the coding process and collected data to address their research 
questions. Not all students chose the same AI chatbots or employed the same data analysis methods. 
The subsection below explains how data were gathered to address the research question: “Can 
ChatGPT and Bing Chat generate concise computer code better than a human developer could?” 

Student case 
When selecting a programming language for the Find & Replace application, the authors looked at 
several criteria. First, the program must be self-contained and not require the client to install third-
party libraries. Second, the language should have good support for editing Office files (particularly 
.docx and .xlsx) and converting them to PDF files for export. It must not mess up the formatting of 
the documents when replacing text. Third, the language should have extensive documentation so the 
chatbots can easily generate code for a wide variety of tasks. Finally, the ideal language should have 
cross-platform support so the application can run on either desktop or mobile (desktop Windows 
being the main target) with minimal code changes. Speed was not among the criteria. 

To gather data, the authors wrote a prompt that would be fed to ChatGPT and Bing Chat. Both 
chatbots were asked the same question, and their responses were recorded. Along with the code each 
chatbot generated, the collected data also consisted of the number of lines and characters in each re-
sponse and any comments related to that test. These comments included whether one or both chat-
bots required multiple attempts to generate working code, whether the code necessitated major or 
minor modifications before it would run, and whether Bing Chat’s “Precise” mode had to be used if 
the prompt exceeded the 2000-character limit for “Balanced” mode, among other things. Tests were 
conducted around once per week, representing milestones in the process of completing the Find & 
Replace project. The last test occurred shortly before the program was done and was ready to send to 
the client for testing and feedback. The authors chose to focus on quality over quantity, meaning 
fewer data points with extensive analysis instead of more data points with limited analysis of the re-
sults. 

Note that the chosen metric – conciseness of code generated by AI – is only relevant when the AI is 
able to give working code, or at least code that can be made to work after multiple prompts and 
modifications. If the AI could not generate satisfactory code after several tries and major modifica-
tions, the code was not included in the dataset. 

DATA ANALYSIS PROCEDURES 
Data analysis involved two distinct categories of tests: quantitative and qualitative. For quantitative 
analysis, the author found the percentage of extraneous lines and characters in each chatbot’s re-
sponse by counting the total number of extraneous lines and characters and dividing the counts by 
the length of each response in lines and characters, respectively. The percentages were then averaged, 
and the result was compared to a threshold to determine whether the chatbots could produce concise 
computer code. If both averages (extraneous lines and extraneous characters) were under 2%, the 
chatbot would be deemed capable of writing concise code; if not, it would fail the quantitative test. 

For qualitative analysis, the authors calculated the frequency of code requiring modifications, major 
or minor, as well as how often the chatbots failed to generate working code on the first try. These 
frequencies were then compared to thresholds: if a chatbot’s code needed major modifications no 
more than 15% of the time and minor modifications no more than 30% of the time, and if no more 
than 30% of prompts required two or more tries to get working code, then the chatbot would pass 
qualitative analysis; if not, the chatbot would fail the test. 
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These percentages were chosen based on what an experienced developer might want from an AI as-
sistant. If a chatbot produces concise, working computer code more than half the time (which is true 
if the frequencies are below the proposed thresholds – major modifications 15% of the time and mi-
nor modifications 30% of the time leaves 55% without needing modifications), it could be consid-
ered a useful assistant and not a waste of time. Since the optimal threshold depends on an individ-
ual’s skill and coding speed, a 45% failure rate may be too high for many developers. However, it 
represents a bare minimum, which, if not met, disqualifies an AI assistant from being considered use-
ful to most programmers until it is improved enough to meet the threshold. 

DATA AND ANALYSIS 
Initially, the authors tried to write the Find & Replace program in JavaScript. However, this did not 
turn out well since client-side JavaScript has limited abilities to edit Office files without paid third-
party libraries. So the authors switched to C++ but ended up using Python (compiled for Windows 
with PyInstaller) because of its cross-platform nature and vast collection of libraries for working with 
Office files. Due to the sheer volume of Python code on public repositories and the extensive 
amount of Python documentation, the AI assistants (having been trained on this data) were more ef-
fective at generating code in Python than in JavaScript or C++. 

According to the results of analyzing the data, both ChatGPT and Bing Chat passed the quantitative 
test for concise code. On average, code from ChatGPT had 0.7% extraneous lines and 1.4% extrane-
ous characters, while code from Bing Chat had 0.7% extraneous lines and 1.1% extraneous charac-
ters. These totals were well below the 2% threshold, meaning that according to the authors’ standard, 
both chatbots are able to produce concise computer code. 

However, it was also found that neither ChatGPT nor Bing Chat passed qualitative analysis. Alt-
hough both chatbots met the thresholds for how often it takes two or more tries to get a working an-
swer – ChatGPT needed multiple tries 30% of the time, which just meets the threshold, while Bing 
Chat needed multiple tries 20% of the time – neither met the thresholds for producing code that runs 
without being modified first. While Bing’s code only required major modifications 10% of the time, 
which was below the 15% threshold, it required minor modifications 70% of the time, far above the 
30% threshold. ChatGPT failed to meet both thresholds, needing major modifications 30% of the 
time and minor ones 50% of the time (see Figure 1). In other words, only 20% of ChatGPT’s code 
and 20% of Bing Chat’s code worked without modifications. 

 
Figure 1. The results of quantitative and qualitative analysis on 

ChatGPT (left column) and Bing Chat (right column) 
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It must be noted that the results varied significantly depending on which programming language was 
used. Both chatbots performed worse when the chosen language was C++ than when it was 
HTML/JavaScript or Python. This is likely because Python and HTML have more online documen-
tation than C++. Also, C++ is more platform-dependent, so the chatbots may have mixed code 
samples designed to run on different platforms, resulting in a program that will not compile for any 
platform. 

For a more detailed analysis of questions asked and how the chatbots performed, see Appendix A 
and Appendix B respectively. It contains two tables, which show the quantitative and qualitative anal-
ysis for each of the ten tests, which programming language each test used, and comments on how the 
numbers and ratings were chosen. 

ETHICAL CONCERNS 
Despite the limitations of generative AI, many developers still find it useful, citing increased produc-
tivity, faster debugging, and inspiration, among other reasons (see Campbell, 2020; Ebert & Louridas, 
2023; Shi et al., 2023; Tichy, 1987). Nonetheless, the future of artificial intelligence in software devel-
opment is uncertain due to current copyright lawsuits. According to Samuelson (2023), if the plain-
tiffs in such lawsuits triumph, generative AI may be restricted to code that is in the public domain or 
allows redistribution without citation, which would reduce AI’s power to write code for a variety of 
contexts. Alternatively, it is possible that training the models on copyrighted data will remain legal 
while using the code they generate still violates copyright laws (Caballar, 2022). 

Regardless of how these lawsuits turn out, it is advised that programmers who work with generative 
AI not integrate the suggested code unless they are willing to spend extra effort researching its 
sources. Developers could also refrain from asking for specific code and only request boilerplate 
code and ask questions on abstract programming concepts, avoiding the risk of introducing copy-
righted code into the project. While neither of these solutions is optimal, they may be the wisest 
courses of action until these legal cases are settled. 

Theoretically, one could build an AI chatbot that is aware of the sources of its code and able to cite 
them. Then, developers who employ the code could simply copy the citations into their own 
projects, eliminating the legal tension that arises from not knowing whether the code requires 
attribution for legal use. However, this would necessitate major rebuilding and retraining on the part 
of all major generative AI companies. Perhaps future breakthroughs in AI research will turn this 
vision into a reality. 

CONCLUSION 
Based on the results of this study, the first hypothesis (ChatGPT and Bing Chat cannot write as con-
cise of code as a human developer) is incorrect since both chatbots met the threshold for concise 
code. The second hypothesis (Bing Chat will perform better than ChatGPT in generating concise 
code) is correct since Bing Chat outdid ChatGPT in all qualitative and quantitative tests, other than 
requiring minor modifications more often. However, an issue unforeseen when the hypotheses were 
proposed, namely the chatbots’ inability to yield working code on the first try, made it impossible to 
fully test these hypotheses. (See the Limitations section for a more detailed discussion.) 

The results of this study imply that generative AI can produce concise computer code, yet it struggles 
to write code that runs without modifications. The latter is arguably a more important metric than 
the former, as developers are more concerned that code works than with how concise it is. Thus, the 
results of this study are of limited importance given what programmers are currently looking for in a 
virtual assistant. However, as advances in AI enable it to generate code that contains fewer errors, 
developers will start to care more about quality and conciseness – so this study might be more rele-
vant when that time comes. 
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There is still much improvement to be made in designing large language models that assist develop-
ers in writing computer code. Not only do even the best models fall short of producing code that is 
free of errors, but they also potentially violate copyright restrictions by not citing the sources of the 
code they memorize. Once these issues are addressed, though, AI is certainly capable of jumping the 
smaller hurdles of making its code more concise and efficient. 

How can this study guide future AI software development? First, new models should be designed to 
decrease the error rate so that code runs without modifications more often. It appears that using 
more parameters and adding RAG results in better code with fewer errors. Second, more work can 
be done to improve results for programming languages with less documentation and publicly availa-
ble code. Specifically, trainers could write more code examples by hand for languages with less docu-
mentation so that they perform equally well with languages that have more documentation. Third, 
generative AI would benefit from a mechanism that checks the code it produces. This could be a 
simple syntax analyzer or compiler that gives feedback to the AI, which would then fix the code iter-
atively until the result executes without errors. If implemented, these changes might well boost the 
accuracy of AI chatbots until they surpass the thresholds proposed in this paper. 

Despite the challenges in this study, the authors were able to complete the application for the client, 
who was pleased with the result. Although this study presents a pessimistic outlook on generative 
AI’s ability to help developers, the technology played an integral role in the development of the Find 
& Replace program for reasons beyond the scope of this study. 

LIMITATIONS 
The data collected for this study only includes questions related to three programming languages – 
HTML/JavaScript, C++, and Python – because the scope was limited to a single project. Conse-
quently, while the dataset is more diverse than what questions focused on a single programming lan-
guage could achieve, this study fails to account for the wide variety of languages developers employ 
worldwide. 

Moreover, only ten samples were recorded, as data collection stopped when the Find & Replace pro-
ject was finished. Although the analysis for each data point is highly detailed, the conclusions of this 
study are limited in strength due to the modest number of samples. 

Finally, the chosen metric, whether the generated code is concise, is one part of a larger picture, 
which includes other metrics such as how often generative AI outputs working code, whether further 
prompting can improve the initial code, and how efficient the code is compared to a human devel-
oper’s work. Only when artificial intelligence can give working code that is efficient and secure will 
conciseness be a significant factor. Once future generative AI models overcome the major hurdles 
existing ones face, such as code failing to run or containing security vulnerabilities, a future study 
may pick up where this one left off and reveal further insights into AI’s ability to optimize the code it 
produces. 
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APPENDIX A 
Here is an unedited example of the initial prompt fed to ChatGPT and Bing Chat, the responses 
from both chatbots, and the author’s comments on the findings. This will give readers an idea of 
how the tests were conducted. 

 

Here is an unedited example of the initial prompt fed to ChatGPT and Bing Chat, the responses 
from both chatbots, and the author’s comments on the findings. This will give readers an idea of 
how the tests were conducted. 

 

Prompt 1 (9/14/2023) 
 
Please give me a JavaScript interface with these buttons: one called "UploadWordDocBut-
ton" with the text "Choose book" that when pressed gives a dialog to select a .docx file, one 
called "UploadExcelDocButton" with the text "Choose Excel sheet" that when pressed gives 
a dialog to select a .xlsx file, and one called "GoButton" with the text "GO!". GoButton 
should be grayed out until the .docx and .xlsx files have been chosen. Make the code as con-
cise as possible. 
 
ChatGPT’s answer: 
 
<html> 
<head> 
<script> 
function enableGoButton() { 
var docxFile = document.getElementById("UploadWordDocButton").value; 
var xlsxFile = document.getElementById("UploadExcelDocButton").value; 
if (docxFile && xlsxFile) { 
document.getElementById("GoButton").disabled = false; 

https://doi.org/10.1109/MC.2019.2957958
https://doi.org/10.1109/MS.2023.3265877
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1126/science.adi0656
https://doi.org/10.1126/science.adi0656
https://doi.org/10.1109/COMPSAC57700.2023.00142
https://doi.org/10.1109/MC.1987.1663415
https://doi.org/10.1109/MSPEC.2023.10177044
https://doi.org/10.48550/arXiv.2311.01020
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} 
} 
</script> 
</head> 
<body> 
<input type="file" id="UploadWordDocButton" onchange="enableGoButton()" ac-
cept=".docx" /> 
<label for="UploadWordDocButton">Choose book</label> 
<br /> 
<input type="file" id="UploadExcelDocButton" onchange="enableGoButton()" ac-
cept=".xlsx" /> 
<label for="UploadExcelDocButton">Choose Excel sheet</label> 
<br /> 
<button id="GoButton" disabled>GO!</button> 
</body> 
</html> 
 
Bing Chat’s answer: 
 
Here is a concise JavaScript interface with three buttons: “UploadWordDocButton”, “Up-
loadExcelDocButton”, and “GoButton”. The “UploadWordDocButton” and “Up-
loadExcelDocButton” buttons will open a dialog box to select a .docx or .xlsx file, respec-
tively. The “GoButton” will be grayed out until both the .docx and .xlsx files have been cho-
sen. 
const UploadWordDocButton = document.createElement("input"); 
UploadWordDocButton.type = "file"; 
UploadWordDocButton.accept = ".docx"; 
UploadWordDocButton.style.display = "none"; 
UploadWordDocButton.addEventListener("change", () => { 
if (UploadExcelDocButton.files.length > 0) { 
GoButton.disabled = false; 
} 
}); 
 
const UploadExcelDocButton = document.createElement("input"); 
UploadExcelDocButton.type = "file"; 
UploadExcelDocButton.accept = ".xlsx"; 
UploadExcelDocButton.style.display = "none"; 
UploadExcelDocButton.addEventListener("change", () => { 
 
if (UploadWordDocButton.files.length > 0) { 
GoButton.disabled = false; 
} 
}); 
 
const GoButton = document.createElement("button"); 
GoButton.textContent = "GO!"; 
GoButton.disabled = true; 
 
document.body.appendChild(UploadWordDocButton); 
document.body.appendChild(UploadExcelDocButton); 
document.body.appendChild(GoButton); 
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I hope this helps! 

 

Result: 
ChatGPT: 22 lines, 746 characters 
Bing Chat: 27 lines, 859 characters 
Comments: ChatGPT’s answer is better because it works out of the box, while Bing’s is in-
complete. I should have specified “HTML and JavaScript” in the prompt, not just JavaS-
cript. 

 

The full dataset with all ten tests is available on IPFS at this link: 
ipfs://bafybeiew7ahtj6a52eslgxctdhzqgxpdqoqc5uzkq4xlktytrsidz7fbny/Testing Chatbots.docx 

 

APPENDIX B 
The following two tables show the detailed results from the qualitative and quantitative analysis tests: 

ChatGPT: 

 
 

Bing Chat: 

 
 

The Excel sheet with that data is accessible at this IPFS link: 

ipfs://bafybeiew7ahtj6a52eslgxctdhzqgxpdqoqc5uzkq4xlktytrsidz7fbny/Analyzing Chatbots.xlsx 

ipfs://bafybeiew7ahtj6a52eslgxctdhzqgxpdqoqc5uzkq4xlktytrsidz7fbny/Testing%20Chatbots.docx
ipfs://bafybeiew7ahtj6a52eslgxctdhzqgxpdqoqc5uzkq4xlktytrsidz7fbny/Analyzing%20Chatbots.xlsx
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