
Journal of Information Technology Education Volume 4, 2005 

Editor: Eli Cohen 

Become a Star* 
Teaching the Process of Design and Implementation 

of an Intelligent System 
{* domain expert, knowledge engineer, programmer, end user, project manager} 

Anne Venables and Grace Tan 
Victoria University, Melbourne City, Australia 

Anne.Venables@vu.edu.au Grace.Tan@vu.edu.au  

Abstract 
Teaching future knowledge engineers, the necessary skills for designing and implementing intel-
ligent software solutions required by business, industry and research today, is a very tall order. 
These skills are not easily taught in traditional undergraduate computer science lectures; nor are 
the practical experiences easily reinforced in laboratory sessions. In an attempt to address this 
issue, a software development project, designed to take students through a complete process of 
knowledge engineering, was introduced in an undergraduate Intelligent Systems subject. In this 
project, students were required to act as domain experts, knowledge engineers, programmers, end 
users and project manager in the production of a game-playing expert system. The paper de-
scribes the project, its objectives and development, as well as some of the benefits.  

Keywords: Intelligent Systems, Expert Systems Development, Role-playing Learning, Game 
Design. 

Introduction 
Typically Intelligent Systems (IS) or Artificial Intelligence (AI) subjects are offered in the final 
year of a Computer Science degree, since students need some programming and software devel-
opment experience to contend with the scope of the subject. The content is broad and ever-
changing: spanning a diverse and disparate range of topics from expert systems and robotics, 
through machine intelligences and neural networks; hinging on the cutting edge of computer sci 
ence research; and, prominently represented in real-world applications. Such subject offerings 
should introduce students to different problem solving strategies and heuristics of IS and AI, as 
well as aim to help students gain an understanding of the development of an IS and the process of 
knowledge engineering.  

Within the tight delivery frameworks and time limits of a typical teaching semester, it is difficult 
to cover all the different fields of 
study in an IS subject well. Some lec-
turers faced with such diverse subject 
matter, opt to do a minimal subset of 
topics, choosing one problem-solving 
strategy and focusing on some of its 
aspects. As a consequence, the sup-
porting student laboratory sessions 
center on using artificial practice in-
stances of the chosen strategy. Using 
this approach, it is difficult for stu-

Material published as part of this journal, either on-line or in 
print, is copyrighted by the publisher of the Journal of Informa-
tion Technology Education. Permission to make digital or paper 
copy of part or all of these works for personal or classroom use is 
granted without fee provided that the copies are not made or dis-
tributed for profit or commercial advantage AND that copies 1) 
bear this notice in full and 2) give the full citation on the first 
page. It is permissible to abstract these works so long as credit is 
given. To copy in all other cases or to republish or to post on a 
server or to redistribute to lists requires specific permission and 
payment of a fee. Contact Editor@JITE.org to request redistribu-
tion permission.  

mailto:Iwona.Miliszewska@vu.edu.au
mailto:Grace.Tan@vu.edu.au


Become a Star 

34 

dents to develop the necessary knowledge engineering skills since they are not given the opportu-
nity to work on a problem of any breath or depth.  

As an elective study in a Computer Science degree, the subject of Intelligent Systems mostly at-
tracts students majoring in computer science, however it also appeals to engineering students. All 
enrolling students must have completed two programming subjects and some will have studied 
software engineering and/or software development subjects. As a consequence of the liberal pre-
requisite requirements and broad subject appeal, the subject includes a heterogeneous student 
group representing a broad range of background skills and differing ways of learning. The vary-
ing programming backgrounds of IS students (Hill & Alford, 2004), and availability of suitably 
equipped laboratories and software, are other limiting factors in the delivery of such subject mate-
rial. Hence, at no stage do students have an opportunity to experience commercial knowledge 
engineering software, or develop and create an intelligent system? 

Rationale for & Design of the Project 
Given the above difficulties of presenting IS subject content, it was decided that one way of ad-
dressing those complexities would be through the introduction of a software development project. 
Even though the task itself is not considered a capstone project for the degree, it would take stu-
dents through the complete process of knowledge engineering, where there would be as much 
emphasis on the process of creation as on the end product itself. As noted by Ye and Gray (1996) 
who were also frustrated by similar teaching challenges in their accounting information course, 
“teaching expert system development is particularly difficult” in that it requires an understanding 
of the decision making processes in creating such projects. In our case, the major pedagogical 
goal was primarily to expose students to the development process and, particularly the various 
roles of domain expert, knowledge engineer, programmer, end user and project manager that they 
would need to play throughout, as students could be expected to play any of these roles in their 
future professional careers.   

Such role-playing strategies and exercises as a vehicle for student instruction are reported 
throughout the computer science education literature, particularly in courses that require students 
to plan, estimate, organize and communicate (Dean & Hinchey, 1995; Jones, 1987; Sullivan, 
1993; Zowghi & Paryani; 2003). This approach emphasizes integration of theory with practice 
and is associated with the experiential way of learning, described by Kolb (1984). Previously 
Kolb and Fry (1975) described it as a cyclical process passing through four stages: experiencing, 
reflecting, concluding and testing. The role-playing strategy was specifically structured to link 
classroom and textbook theory to practice, in a way that would promote ‘deep’, rather than ‘sur-
face’, learning. It requires that students apply their programming skills and the theoretical knowl-
edge of problem-solving strategies and heuristics to the development of a rule-based expert sys-
tem.  By taking students through the complete process of knowledge engineering, such problem-
based learning encourages the simultaneous development of a knowledge base and skills (Soh, 
2004) together with a capacity for independent work. Hopefully, such a strategy would encourage 
a development of the craft of knowledge engineering (Armarego & Clarke, 2003) whilst equip-
ping students with the expertise and enough practical experience to approach future problems in 
their working careers.  

The project involved the creation of an expert system capable of playing a game. An expert sys-
tem is “a computer program that represents and reasons with knowledge of some specialist sub-
ject with a view to solving problems or giving advice” (Jackson, 1999). For instance, an often 
cited historical example is MYCIN which was a software developed by Stanford University in the 
1970s. In testing, MYCIN could diagnose infectious blood diseases to the same ability as human 
expects and it performed better than novice doctors during testing (Cawsey, 1994). Today, expert 
systems are endemic in business and research. They perform a myriad of tasks including data in-



 Venables & Tan 

 35 

terpretation, such as sonar signals, diagnosis of malfunctions in equipment, analysis of complex 
chemicals, configuring of computer systems and planning of sequential actions of robots (Jack-
son, 1999).  

Typically, a real-world expert system development is conducted by a team of various skilled 
members, as shown in the Figure 1 (Negnevitsky, 2002). Under the direction of the project man-
ager, it is the primary task of the knowledge engineer to question and to elicit the expert knowl-
edge residing with the domain expert, with the goal of encapsulating that knowledge in a set of 
rules, or heuristics. Subsequently, these rules are encoded, by the programmer, in an intelligent 
system. An end user comes to this program seeking expert advice equivalent to that given by the 
domain expert, without the step of consulting the human expert directly. Thus the machine or arti-
ficial “intelligence” appears to the end-user when they query the expert system.  

Implementation 
The adoption of an expert system development project in the Intelligent Systems subject at Victo-
ria University was first undertaken in 2002, and the implementation reported here is of the 2003 
and 2004 iterations of the project.  

In a four week timeframe, students were asked to design and fully implement an expert system to 
play a game familiar to the students, known as ‘Twenty Questions’. In a game of ‘Twenty Ques-
tions’ there are two players. One player thinks of an object, say a car, and the second player tries 
to discover what the object is, by asking the first player a series of questions. The second player is 
the winner, if they can guess the object, within twenty questions. If not, the first player is the 
winner. In the project, the expert system is the second player. According to Knowles, Holton, & 
Swanson (2001), students learn only if they are motivated and ready to learn and since there is a 
long association between the study of game playing and their solution strategies in AI and IS 
courses (Jones, 1987), it was expected that the creation of a game playing expert system would be 
a useful vehicle to arouse and motivate student interest (Pilgrim, 1995; Soh, 2004). In addition, 
students were encouraged to work in pairs rather than alone, so that they could discuss their ideas 
and strategies whilst they took on the differing roles of the various members of an expert system 
development team. Such role-playing gave the students an opportunity to also improve their oral 
and written communication skills (Sullivan, 1993). 

E x p e r t  S y s t e m

E n d - u s e r

K n o w le d g e  E n g in e e r P r o g r a m m e rD o m a in  E x p e r t

P r o j e c t  M a n a g e r

E x p e r t  S y s te m
D e v e lo p m e n t  T e a m

Figure 1: A real-world expert system team members (Negnevitsky, 2002) 



Become a Star 

36 

The project was purposely broken into five sequential steps; the steps corresponded with the five 
roles in the expert system development team, domain expert, knowledge engineer, programmer, 
end user, and project manager. These steps gave students the opportunity to experience each role 
as shown in Figure 2. Each step came with instructions, and involved the use of differing tech-
nologies for completion. To further mimic real-world scenarios, the project instructions were 
quite general, and resembled directions rather than specifications. For instance, step three, titled 
‘Become a programmer’, recommended students should acquire proficiency in an industry ac-
cepted expert system shell Jess (Sandia National Laboratories, 2003), but no specific instructions 
were given on how to use the software.  

 

Aside from word processing and web page accessing, the main technology to which students 
gained exposure was Jess, a commercially licensed rule engine and scripting development envi-
ronment for use in writing expert systems (Sandia National Laboratories, 2003). There were four 
main reasons for selecting the software: firstly, Jess supported different types of inferences, in-
cluding types that were covered in lectures, i.e. forward chaining and backward chaining; sec-
ondly, Jess could be programmed to handle uncertainty in the rules which form the basis of any 
expert system; thirdly, Jess was written in Java, and the majority of the students in the IS subject 
were familiar with Java; and finally, Jess could be programmed to directly deal with, handle and 
manipulate other Java objects as part of the expert system graphical user interface(GUI). 

Steps 
1. Become a Domain Expert.  

• Go to the ‘Twenty Questions’ web site http://q.20q.net/q.cgi  
• Play sufficient games to get a sense of the sort of questions which might be useful for deciding 

amongst objects. 
 
2.   Become a Knowledge Engineer 

• Go to the subject web page and download the file of 80 objects. 
• Design a set of rules, with the assistance of a domain expert that can be used to distinguish each ob-

ject from the others. 
 
3.   Become a Programmer 

• Become proficient in Jess. 
o Complete the introductory Jess tutorial. 
o  Investigate the documents directory that comes with the Jess software. 

• Investigate the examples directory that comes with the Jess software. There are possibly examples 
of how to set up your rule base and how to query your end user. Hint: animal.clp. 

• Code the rule base into Jess, load the database with the facts, and use Jess for your inference. 
 
4.   Become an End User 

• Thoroughly test the expert system, and try to break it. 
• Offer comment on poor design of questions or logic decisions. 

 
5.   Become a Project Manager 

• Get all of the above done before the deadline 
• Compile documentation 

Figure 2: Expert system development specification 

http://q.20q.net/q.cgi


 Venables & Tan 

 37 

Discussion 
From a student perspective, given that an assignment was a mandatory part of the assessment, 
producing a game playing expert system was indeed a novelty. After playing some games of 
‘Twenty Questions’ with the free software located at http://q.20q.net/q.cgi, (Burgener, 2003), 
some students were intimidated by the “intelligence” of the online game. The software asked a 
user to think of any object and it would then guess, with seemingly great accuracy, what this ob-
ject was within twenty questions. Objects such as zebra, seaweed and train were easily guessed 
by the software and despite many attempts, students had great difficulty in finding an object that 
could not be guessed within twenty questions. Once students were reminded that their software 
had to decide amongst eighty known objects only, it became apparent that then their role as 
knowledge engineers was to decide upon the rules needed to discern one object from all of the 
others in the set.  

After allowing time for students to complete, step 1, i.e., become domain experts, a classroom 
discussion was conducted on good design of the rule base. Using a binary tree search for the 
questions, the lecturer pointed out that theoretically it should be possible for all eighty items (in 
Appendix) to be categorized by a set of seven questions. This revelation stimulated much corridor 
discussion and querying by students, acting as knowledge engineers trying to decide upon the 
optimal set of questions to do the classification of objects for the game. Subsequently on a num-
ber of occasions, groups of students approached the lecturer asking for an adjudication about the 
legitimacy of some rules, such as “Is it okay to ask if an object starts with the letter ‘E’?” and 
“Can you ask a question that divides the remaining objects into three subgroups rather than 
two?” Importantly, there was no single best or correct solution to the design since there are near 
infinite numbers of good strategies and rules that could be applied. This meant that, even with 
over fifty different student pairs, no two solutions should be identical and that any form of plagia-
rism would be obvious. 

Having decided upon the set of rules for their rule base, the students next needed to act as pro-
grammers. In the lead time to the project, the students had been expected to complete a set of 
standard tutorial exercises to familiarize themselves with the basics of the Jess. These exercises 
were essentially a set of “how to” instructions on how to declare functions, rules and data. Frus-
tratingly for the students, these exercises gave little indication on how to put the necessary se-
quences together to create their own game solution. Some students found the deliberate lack of 
detailed instructions particularly challenging. They had to search amongst the various help files 
and examples to learn how to combine these rudimentary steps into a coherent software solution. 
In the real world, ambiguous or scanty specifications, are one of the most likely of scenarios to be 
encountered by software engineers (Dawson, 2000). The programmer cannot expect to emulate a 
ready-made solution, or the development environment, or even know the language syntax al-
ready. The programmer will be expected to practice much initiative in acquiring these skills be-
fore production of any of the clients’ code. Although many of the students found this step in the 
process the most frustrating, it was one of the most important, unwritten lessons that they were 
expected to learn.  

Evaluation 
Given the four week time frame for the delivery of the expert system, it was noted that as some of 
the weaker students began running short on time; it was the end user and project manager roles 
that tended to get postponed.  Some students found that, as end users, they were often “too close” 
to the solution to thoroughly test their expert system and spot any design flaws. Additionally, 
these students spent little or no time producing adequate documentation for their product whilst 
acting as project managers responsible for completion. 

http://q.20q.net/q.cgi


Become a Star 

38 

For those students who did manage their time and project well, the payoff came in completion of 
a well constructed, working expert system along with the opportunity to extend their develop-
ment. Such development was rewarded by a criterion based assessment system, as suggested by 
Lister and Leaney (2003), where a standard solution was considered worth only 70% of the total 
available marks. The remaining 30% of marks was given to encourage deeper learning by being 
assigned to any one of a possible range of extensions and enhancements to the solution. These 
extensions included exploration of Jess’s capabilities of handling uncertainty as well as using 
Java to produce more “fun” graphical user interfaces for the system’s front end. Several more 
motivated students did incorporate these extensions into their project, improving the functionality 
of their expert system and receiving additional marks dependent upon the degree of difficulty and 
the innovation involved. An example of a student expert system is shown in Figure 3. 

The pursuit of adventurous teaching and active learning has been advocated by McLoughlin and 
Oliver (1999), but was the inclusion of a knowledge engineering project worthwhile in this in-
stance? Standard student end of subject surveys included two statements in 2003 and three state-
ments in 2004, referring to the assignment, see Table 1. From a student perspective, it seemed 
that the assignment was useful in giving an appreciation of the process of creating a rule-based 
expert system and in particular seemed to achieve an appreciation by students of each of the roles 
they had been asked to play. The student responses relating to the easiness or otherwise of the 
task difficulty were well spread. This result was partly to be expected, given the diverse back-
grounds of the student body. In future iterations, we plan to survey the students more extensively 
about the project, with both pre and post assignment surveys to gauge the actual learning out-
comes. 

 
Figure 3: A student expert system team with a GUI front end 



 Venables & Tan 

 39 

Table 1: Intelligent Systems Student Survey results for 2003 and 2004.  
Total of 58 responses in 2003 and 46 responses in 2004 

Disagree/ 

Strongly Disagree 

Agree/ 

Strongly Agree Questions 

2003 2004 2003 2004 

The assignment was easier than I expected  20 19 15 8 

The assignment taught me about all aspects of creating a 
rule-based expert system 

7 6 43 30 

The assignment taught me the different roles of a knowl-
edge engineer, domain expert, programmer, end user and 
project manager in creating an expert system. 

– 4 – 30 

 

The Intelligent Systems subject and its parent Computer Science degree that has been described 
above runs both locally in Melbourne, and ‘off-shore’ in Hong Kong, China, Malaysia and in 
Sydney, Australia. Since the incorporation of the knowledge engineering project in the local 
course, the same assignment has been set for all offshore groups in 2004. Upon the advice of their 
‘local’ lecturers, the roles remained the same. However, it was necessary to change a rose to an 
orchid, this flower being more familiar to our offshore students. From all reports to date, the pro-
ject seems to have traveled well and a more extensive investigation across campuses is planned 
for the near future.  

Conclusions 
Knowledge engineering, the development of an intelligent system, is an art, as much as it is a sci-
ence. In an undergraduate IS subject, what is the best way to prepare students in this art, i.e., learn 
something of the process and involve them in product creation? Supported by standard lectures 
and laboratory sessions, the inclusion of an expert system development project was an ideal real-
world scenario that encouraged students’ learning and practice. In ‘becoming a star’, i.e., role-
playing each of the five members of an expert system development team, students were able to 
apply much of the theory of problem solving strategies, whilst experiencing the tasks of, and the 
demands upon, each team member. Also, the effectiveness of this project was due, in part, to the 
fun aspect of producing a game that motivated students’ curiosity and continuing engagement. As 
a result, the ‘become a star’ project has become pivotal in future iterations of the IS subject, both 
locally and offshore.  

Acknowledgements 
In particular, thank you to the overseas ‘local’ lecturers of the Intelligent Systems subject, who 
supported their/our students in their expert systems developments.  

References 
Armarego, J. & Clarke, S. (2003). Preparing students for the future: Learning creative software develop-

ment - setting the stage. In Learning for an Unknown Future: Proceedings of HERDSA (The Higher 
Education Research and Development Society of Australasia) Conference Christchurch, New Zealand.  

Burgener, R. (2003). 20Q Twenty questions. V5.3.6. Retrieved Jan 12, 2004 from http://q.20q.net/q.cgi  

Cawsey, A. (1994). MYCIN: A quick case study. Retrieved Jan 12, 2004 from 
http://www.cee.hw.ac.uk/~alison/ai3notes/section2_5_5.html  

Dawson, R. (2000). Twenty dirty tricks to train software engineers. In Proceedings 22nd International 
Conference Software Engineering.ACM (pp 209-218). Limerick, Ireland.  

http://q.20q.net/q.cgi
http://www.cee.hw.ac.uk/~alison/ai3notes/section2_5_5.html


Become a Star 

40 

Dean, N. & Hinchey, M. G. (1995). Introducing formal methods through role-playing. In Proceedings of 
the twenty-sixth SIGCSE technical symposium on Computer science education. 3/95 (pp.302-305). 
Nashville, Tennessee, U.S.A.  

Hill, J. M. D. & Alford, K. L. (2004). A distributed task environment for teaching artificial intelligence 
with agents. In Proceedings of the 35th SIGCSE technical symposium on Computer science education. 
Norfolk, Virginia, U.S.A.  

Jackson, P. (1999). Introduction to expert systems (3rd ed.). Addison-Wesley. 

Jones, J. S. (1987). Participatory teaching methods in computer science. In Proceedings of the eighteenth 
SIGCSE technical symposium on Computer science education. (pp. 155-160). St. Louis, Missouri, 
U.S.A. 

Knowles, M., Holton, E. & Swanson, R. (2001). The adult learner: The definitive classic in adult education 
and human resource development (5th ed.). Woburn, MA: Butterworth-Heinemann. 

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Engle-
wood Cliffs, NJ: Prentice Hall. 

Kolb, D. A. & Fry, R. (1975). Towards an applied theory of experiential learning. In C. L. Cooper (Ed.), 
Theories of group process. Chichester: John Wiley.  

Lister, R. & Leaney, J. (2003). First year programming: Let all the flowers bloom. In Proceedings of Fifth 
Australasian Computer Science Education Conference, (ACE2003), Adelaide, Australia. 20/03. 

McLoughlin, C. & Oliver, R. (1999). Pedagogic roles and dynamics in telematics environments. In M. Sel-
inger & J. Pearson (Eds.), Telematics in education: Trends and issues (pp. 32-50). Oxford: Pergamon. 

Negnevitsky, M. (2002). Artificial intelligence: A guide to intelligent systems (1st ed.). Pearson Education. 

Pilgrim, R. A. (1995). TIC-TAC-TOE: Introducing expert systems to middle school students. SIGCSE Bul-
letin, 27 (1), 340 – 344. 

Sandia National Laboratories. (2003). Jess the rule engine for the JavaTM platform. Retrieved Jan 12, 2004 
from http://herzberg.ca.sandia.gov/jess/index.shtml  

Soh, L. K. (2004). Using game days to teach a multiagent system class. In Proceedings of the 35th SIGCSE 
technical symposium on Computer science education. Norfolk, Virginia, U.S.A. 

Sullivan, S. L. (1993). A software project management course role-play team-project approach emphasiz-
ing written and oral communication skills. In Proceedings of the twenty-fourth SIGCSE Technical 
Symposium on Computer Science Education. Indianapolis, Indiana, U.S.A. 2/93 (pp. 283-287)   

Ye, L. R. & Gray, G. L. (1996). Developing self-monitoring intelligent tutoring systems for accounting 
education: Some preliminary results. In Proceedings of the Australasian Society for Computers in 
Learning in Tertiary Education 1996 Conference, Adelaide, South Australia. 

Zowghi, D. & Paryani, S. (2003) Teaching requirements engineering through role playing: Lessons learnt. 
In Proceedings of the eleventh IEEE International Requirements Engineering Conference. Monterey 
Bay, California, U.S.A. 

Appendix 
List of 80 objects to be classified
apple 
arm 
ball 
banana 
bed 
bell 

bird 
boat 
book 
box 
branch 
bread 

cake 
car 
cat 
chair 
chicken 
clock 

coat 
corn 
cow 
cup 
dinghy 
dog 

http://herzberg.ca.sandia.gov/jess/index.shtml
http://portal.acm.org/citation.cfm?id=169070.169508&coll=GUIDE&dl=ACM&CFID=11111111&CFTOKEN=2222222


 Venables & Tan 

 41 

doll 
dolphin 
door 
duck 
egg 
elbow 
elephant 
eye 
farm 
fish 
foot 
garden 
grass 
hand 

hill  
hoof 
horse 
kangaroo 
leg 
letter 
lily 
milk 
money 
mosquito 
mountain 
orange 
orchid 
panda 

paper 
pencil 
plant 
postcard 
potato 
rabbit 
rat 
salt 
school 
seed 
sheep 
shelf 
ship 
shoe 

shoulder 
sofa 
squirrel 
stick 
table 
tent 
thermometer 
toy 
tree 
water 
wombat 
wood 
wool 
zebra 
 
 

Biography 
Anne Venables is a lecturer in Computer Science at Victoria Univer-
sity. She has research and teaching interests in artificial intelligence 
and intelligence systems. As a former secondary Science and Mathe-
matics teacher who has migrated into tertiary education, Anne is also 
interested in innovations in education and has previously published in 
this field.  

 

 

 

 

 

Grace Tan is a lecturer in Computer Science at Victoria University. 
Her research interests include innovative teaching methods, develop-
ment of graduate attributes, and issues related to female students in 
computing courses and has published in these areas. 

 

 


