
Journal of Information Technology Education Volume 6, 2007

Editor: Janice Whatley

Python and Roles of Variables in Introductory
Programming: Experiences from Three

Educational Institutions

Uolevi Nikula
Lappeenranta University of

Technology, Finland

Uolevi.Nikula@lut.fi

Jorma Sajaniemi and Matti Tedre,
University of Joensuu, Finland

Jorma.Sajaniemi@joensuu.fi
Matti.Tedre@joensuu.fi

Stuart Wray
Royal School of Signals, Blandford, England

swray@bournemouth.ac.uk

Executive Summary
Students often find that learning to program is hard. Introductory programming courses have high
drop-out rates and students do not learn to program well. This paper presents experiences from
three educational institutions where introductory programming courses were improved by adopt-
ing Python as the first programming language and roles of variables as an aid in understanding
program behavior. As a result of these changes, students were able to write working code from
the very beginning, they found programming easy and interesting, they passed exams with good
grades, and drop-out rates were low. Students became interested in programming and some of
them even changed their personal study plan to include more of programming and computer sci-
ence.

The high abstraction level and complexity of the concepts to be learned in current elementary
programming courses is a serious impediment to students. Python is a simple but powerful pro-
gramming language that supports both procedural and object-oriented programming. It makes
short programs straightforward to write while at the same time facilitating rapid development of
powerful applications. Python has been found to make programming more fun and thus attract
students. Some of the common arguments against Python include concerns about using an inter-
preted language, the different syntax from C++ and Java, the use of whitespace to represent code
blocks, and the lack of static type checking. However, these concerns have not caused any sig-
nificant problems in practice, though it may take some effort to adapt to the syntax of other lan-

guages.

Roles of variables are stereotyped pat-
terns of usage of a variable. For exam-
ple, in the role of a stepper, a variable is
assigned a succession of values that is
predictable and usually known in ad-
vance as soon as the succession starts.
Roles provide students with program-
ming knowledge in a compact form,
which they can then apply in authoring

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Python and Roles of Variables in Introductory Programming

200

and understanding programs independently of the programming language used. In a classroom
experiment, explicit teaching of roles has been found to result in better programming skills.

This paper also discusses the applicability of the roles to Python and notes some changes in the
interpretation of individual roles required by some peculiarities of Python. In general, roles apply
to Python well. However, the lack of constants in Python calls for a new role, and the use of lists
in for-loops suggests a new interpretation for the stepper role. Finally, the difference between the
two data structure roles, organizer and container, is smaller in Python than in other languages
making their separation needless.

Keywords: computer science education, programming, CS1, roles of variables, Python.

Introduction
Undergraduate programming courses often have high drop-out rates and students have poorly
developed programming skills. There has been a continual debate within programming education
circles as to how to best solve these problems. The high abstraction level and complexity of the
concepts to be learned is a serious impediment to students (for example, see (Rich, Perry, & Guz-
dial, 2004; Robins, Rountree, & Rountree, 2003) for reviews). However, even basic programming
concepts such as variables and iteration are hard for many students to grasp. These problems had
been encountered in the three university-level courses presented in this paper. The three courses
vary in their contents, duration, and audience, but the changes made in the courses share two
common issues: adoption of Python as the first programming language and the use of the “roles
of variables” concept as an aid in understanding program behavior.

The high drop-out rates (25-50 %, (Herrmann et al., 2003; Nagappan et al., 2003; Rich et al.,
2004)) and decreasing interest in computer science (Radenski, 2006) have recently been tackled
in many universities by using Python as the first language. For example, in Georgia Institute of
Technology a CS1 course was designed to attract the interests of women (Guzdial, 2003; Rich et
al., 2004), and Chapman University attacked the perception that computer science is a dry and
technically difficult discipline (Radenski, 2006) - and in both of the cases the Python language
formed a central part of the new course implementation. There is also anecdotal evidence that
Python makes programming more fun and thus attracts students (Reges, 2006). In any case, Py-
thon’s simple syntax makes writing programs much easier than writing comparable programs in
Java or C.

Roles of variables (Sajaniemi, 2002) provide students with programming knowledge in a compact
form, which they can then apply in authoring and understanding programs independently of the
programming language used. In a classroom experiment, explicit teaching of roles has been found
to result in better programming skills (Byckling & Sajaniemi, 2006) and in better mental models
of programs (Sajaniemi & Kuittinen, 2005). It has also been confirmed that roles of variables do
correspond to classifications naturally used by programming experts (Sajaniemi & Navarro
Prieto, 2005), i.e., roles belong to experts’ tacit knowledge.

The rest of this paper is organized as follows. We first discuss Python as a first programming lan-
guage and explain the role concept. Then we present the three introductory programming courses
and summarize experiences obtained. Finally we discuss the applicability of the roles to Python
and list changes and interpretations of individual roles as required by some Python peculiarities.

 Nikula, Sajaniemi, Tedre, & Wray

 201

Python and Roles of Variables

Python as a First Programming Language
Donald E. Knuth (2005) looked at programming languages over the past four decades, and con-
cluded that every decade seems to have a favorite programming language. Although Knuth made
no predictions about the favorite language of the current decade, the Python language is a strong
candidate. It is clear that no new programming language will be generally accepted before it has
been proven technically capable in many applications. In a comparison of seven programming
languages (Prechelt, 2000) some key issues of those languages were studied, including the pro-
gram length, programming effort, runtime efficiency, memory consumption, and reliability. In
this comparison Python proved to be a technically capable solution when compared to C, C++,
Java, Perl, Rexx, and Tcl. For example, the programs written in Python were among the shortest
in length, the variation in their length was among the smallest, and the programming time was
also amongst the shortest.

As an interpreted language, the memory consumption and running times of Python are of con-
cern, but in the Prechelt (2000) study Python was about average in those aspects. Although the
results of the study are not conclusive due to small sample sizes (between 4 and 24 programs in
each language), there was no clear reliability difference between different languages, programs in
Python were generally developed in half of the time it took to write the programs in traditional
languages (C, C++, or Java), and the programs were also only half the size. The technical capabil-
ity of Python is also supported by the observation that many serious software developing compa-
nies are using Python, e.g. Google, Nokia, New York Stock Exchange, NASA, Honeywell, and
Philips (Python Software Foundation, 2006).

Some of the common arguments against Python (Donaldson, 2003) include concerns about using
an interpreted language, the different syntax from C++ and Java, the use of whitespace – spaces
and tabs – to represent code blocks, and the lack of strict type checking. The first two objections
are mostly name-calling, since in the light of the language comparison (Prechelt, 2000) they have
no technical consequences.

When compared to C there are some small but important differences in the syntax, but in many
cases these are designed to reduce errors. For example, Python does not accept the statement "if
(a = 0)..." but requires use of comparison operator in this expression: "if (a == 0)..." which is most
often what the programmer actually intended to do. Use of whitespace to represent code blocks
seems awkward at first, but if code blocks are indented properly in C, the outcome is actually the
same. The consistent use of indentation has been shown to improve comprehension (Pane &
Myers, 1996). In C it is easy to have indentation that is inconsistent with the block structure,
which is a fertile source of confusion. In Python this is not possible.

The lack of static type checking is the subject of larger debate as, for example, explicit declara-
tions have been argued against as being redundant information (Pane & Myers, 1996). Static type
checking is also claimed (Donaldson, 2003) to make some techniques difficult to use, and require
much more up-front design from the programmer. The static type checking does of course allow
the compiler to catch type errors early in the programming process. Considering the usability is-
sues of novice programming systems Pane & Myers (1996) suggests though, that Python has ad-
dressed many such issues, for example the conciseness mentioned above, general minimalist de-
sign, and support for debugging. Thus, overall there is a fair amount of evidence to support a de-
cision to start using Python as the first programming language.

Python and Roles of Variables in Introductory Programming

202

Introduction to Roles of Variables
Programmers spend a large part of their lives reading code. According to one estimate
(Lefkowitz, 2005) more than half of software development time is taken up reading code. Pro-
grams must be written to be understood by other people, not just to be executed by computers.
This is clearly a key skill possessed by the expert programmer, a skill that students must learn. As
noted by Abelson, Sussman, and Sussman (1996):

“First, we want to establish the idea that a computer language is not just a way of getting
a computer to perform operations but rather that it is a novel formal medium for express-
ing ideas about methodology. Thus, programs must be written for people to read, and
only incidentally for machines to execute.”

Introductory programming courses where students are merely taught to mimic the mechanical
operation of the machine often leave students confused. Clearly, expert programmers do not see
programs as meaningless strings of symbols. They put a great deal of effort into making their
programs meaningful. If students are to write programs like experts, with structure and meaning,
they must learn to read programs like experts, to see the structure and meaning that have been
written into those programs. One way in which students have been successfully helped to read
more of the meaning in programs is the “roles of variables” concept.

Sajaniemi (2002) introduced the concept of “roles of variables” as a development of Ehrlich &
Soloway’s (1984) notion of “variable plans”. Based initially on analysis of the patterns of vari-
able usage in a number of novice programming textbooks, this classification system can be used
for both teaching programming and analyzing large scale programs. A role is a stereotyped pat-
tern of usage of a variable. For example, in the role of a stepper, a variable is assigned a succes-
sion of values that is predictable and usually known in advance as soon as the succession starts.
The role concept concerns only the succession of values which a variable holds, their lifetimes
and how subsequent values relate to earlier values. It is important to understand that roles are not
related to programming language types of variables, or to the meaning of variables in a particular
program. It is only the pattern of successive values which is described by the role of a variable.

As an example, consider the following program:

count = 0
while count <= 0:
 count = input("Enter count: ")

for n in range(count):
 print "Two times ", n, " is ", 2*n

This program uses two loops. In the first loop, the user is asked to enter a number, and repeatedly
asked again until their input is valid (greater than zero). In this loop we would describe the role of
the variable count as being a most-recent-holder, because the sequence of values that variable
count can assume is unpredictable.

In the second loop, the value of count is used to select a range of integers over which the vari-
able n will iterate. For example, if count was 5, then n will take on the values 0, 1, 2, 3, 4 in
sequence. This sequence is predictable from the start of the for-loop, and cannot be influenced by
any computations in the body of the for-loop, so we describe the role of the variable n as a step-
per.

Table 1 gives a brief description of the different roles.

 Nikula, Sajaniemi, Tedre, & Wray

 203

Table 1: Eleven most common roles of variables

Role Informal description

Fixed-value A variable which is assigned a value only once and the value of
which does not change after that. (Sometimes known as a “sin-
gle assignment” variable.)

Stepper A variable stepping through a systematic, predictable succes-
sion of values.

Most-recent-holder A variable holding the latest value encountered in going
through a succession of unpredictable values, or simply the
latest value obtained as input.

Most-wanted-holder A variable holding the best or otherwise most appropriate
value encountered so far. (For example the biggest value so
far.)

Gatherer A variable accumulating the effect of a series of individual
values, for example a running-total. (Often known as an “ac-
cumulator”.)

Follower A variable that always takes its current value from the previous
value of some other variable.

One-way-flag A Boolean variable that is initialised to one value and may be
changed to the other value, but never reverts to its initial value
once it has been changed.

Temporary A variable holding some value for a very short time only. (For
example while values are rearranged between other variables.)

Organizer A data structure storing elements so that they can be rear-
ranged.

Container A data structure storing elements that can be added and re-
moved.

Walker A variable used to traverse a data structure, for example a
pointer running down a linked list.

These roles do not cover every possible pattern of variable use, but they cover the vast majority.
It has been observed that with these roles it is possible to cover 99% of variable usage in novice-
level programs (Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova, 2006), and that the roles fixed-
value, stepper and most-recent-holder cover 70% of variable usage.

In addition to procedural programming, roles have also been applied to object-oriented and func-
tional programming (Sajaniemi et al., 2006). In the object-oriented paradigm, roles are used for
attributes of objects as well as for variables; objects which represent one conceptual entity (for
example Java Strings) are considered unitary values rather than containers. In the functional pro-
gramming paradigm, roles apply to the recursive behavior of parameters and return values. Roles
can also be used when designing programs. For example, UML class and object diagrams are eas-
ier to understand when attributes are annotated with their roles. For a more comprehensive treat-
ment, see the Roles of Variables home page (Sajaniemi, 2006).

Python and Roles of Variables in Introductory Programming

204

Previous Experiences with Roles
Previous work (Byckling & Sajaniemi, 2006; Sajaniemi & Kuittinen, 2005) reported the results of
classroom experiments comparing a conventional Pascal course with two variants: one using roles
in lectures, the other with additional role-based program animation in lab exercises. The 91 stu-
dents on this course were divided into three groups, referred to as “traditional”, “roles” and “ani-
mation”:

• The traditional group received normal lectures and Turbo Pascal debugger animation in
exercises. This group formed a control group for the other interventions.

• The roles group received lectures using roles systematically plus Turbo Pascal debugger
animation in exercises. Many students in this group correctly used role names in answers
to examination questions, even though the questions did not mention roles. However,
they performed only slightly better than students in the traditional group at problem
solving. Their grasp of roles appeared to be too abstract.

• The animation group attended the same lectures as the roles group but their exercises
used a role-based animation program, PlanAni. This program continuously displayed
graphical reminders of the roles of variables and used pop-up reminders of key events
such as variable creation or loop entry. Students in this group were observed to explicitly
use their knowledge of roles when designing programs in pairs and were much more
successful at building correct programs than either of the other groups. This group also
used role names spontaneously in examination answers.

In both cases where roles were introduced, the students used their new vocabulary to understand
the programs they read. Roles gave students a conceptual framework with which they could un-
derstand variable usage in a similar way to more experienced programmers. In addition, the ani-
mation group’s superior performance in program construction indicates that their understanding
of the roles concepts was deeper than the group which only learned about roles in lectures. This
conclusion is also supported by the fact that the animation group tended to discuss program struc-
tures in a more expert way when they were programming in pairs.

The Three Courses

Course at Joensuu
Python was used this year for the first time as an introductory programming language in the "In-
troduction to Programming" course at the University of Joensuu, Finland. This course is offered
to all students at the university taking computer science as their major or minor subject. Thus,
there is a wide variety of participants ranging from science students to arts students. The course
consists of 24 hours of lectures, 12 hours of lab sessions, and home assignments. There is no text-
book but the slides of lectures are available for students on the web and quite a few students used
a free, publicly available Python guide (Kasurinen, 2006) as a reference. Students use the PlanAni
role-animation program to visualize the execution of four programs during the lab sessions.

The main idea is to make sure that everybody learns the basic concepts of programming and that
everybody enjoys learning them. As a consequence, the lectures proceed slowly, complicated is-
sues are avoided, and all example programs do some meaningful tasks. Technical details and pro-
grams demonstrating specific features of the programming language only are avoided. The course
covers imperative programming but no abstraction mechanisms, i.e., functions and classes are not
included.

Special care is taken to make sure that students have fun in lab sessions and home exercises. For
example, syntax-related questions contain not only syntactically correct and incorrect items but

 Nikula, Sajaniemi, Tedre, & Wray

 205

also brain-twisting items, e.g., a question might ask whether “hundred = 20” is a correct Py-
thon statement. There are also tasks that ask students to write programs that contain some given
code fragment such as:
 while year > 1958 and year < 1978:

with no other restrictions on the solution. Students find such tasks inspiring as they can use their
creativity and compare their own solutions to ideas presented by others.

At the end of the course, students made a self-assessment on how well they had learned Python
constructs and programming-related tasks in general. A four-point scale was used: not at all,
badly, well enough, excellently. In almost all questions more than 85% of the students reported at
least well-enough learning. Only debugging (82%), roles (71%), and for-loops (68%) got a lower
score. At the end of the course, 98% of students passed the final exam with an average grade 3.6
where 1 is the lowest grade and 5 highest.

Of the six roles that were introduced during the course, students reported fixed-value, most-
recent-holder and temporary to be easy whereas stepper, gatherer, and most-wanted-holder were
perceived as being harder. The hardness reported by the students might to be related to how long
they had been using each role: the ones described as easy were introduced during the first three
weeks of the course, the others in the last three weeks.

Teachers of the course found Python an excellent selection as a first programming language: Py-
thon makes it possible to immediately start with interesting, fully-fledged programs having mean-
ingful functionality; students get experiences of discovery and success even in the first lab ses-
sion; the simplicity of syntax enables students to write entire programs from scratch; basic pro-
gramming constructs can be covered with a minimum of concepts, notations, and syntactic de-
tails. In contrast to Java, which was used in previous years, students now spontaneously tried out
their own ideas and wrote their own programs, elaborating their knowledge and improving their
programming skills. Finally, students that had attended the previous course reported that Python
was clearly better than Java as a first language. The only negative feedback from the teachers
concerned the use of the range() construct in for-loops. This was considered to be hard to un-
derstand and unnecessarily different from other programming languages.

Roles were introduced gradually during the course and the lecturer designed example programs
based on the emergence of roles. He reported that this clarified his own thoughts and felt that this
clarity was also transferred to students, too. The idea of asking the question “what does this vari-
able do in this program” with an answer like “holds the smallest value so far” made the presenta-
tion of example programs easy and coherent for the lecturer.

Finally, the lecturer reported that the heavy use of roles in lectures paid off. The distinction be-
tween roles and variable types would not have been clear to students without continual rein-
forcement in lectures. The small number of roles with very clear meanings was also considered to
be a key strength. The lecturer considered the central use of roles to be “a brilliant viewpoint to
programming education”.

Course at Lappeenranta
The introductory course on programming, Fundamentals of Programming, is delivered in two
variants at Lappeenranta University of Technology (LUT), Finland. Course A is targeted at stu-
dents who will need to be able to program later in their studies (computer science and electrical
engineering majors). Course B is targeted at business and other students who need a basic under-
standing of programming. The courses have common lectures, the main difference being the prac-
tical work that the students must complete: course A has a more demanding project and assign-
ments. The courses comprise 28 hours of lectures, plus weekly programming assignments and

Python and Roles of Variables in Introductory Programming

206

quizzes. This arrangement with two courses has been used since 2001, and until fall 2005 the
courses used C as their programming language.

The introductory programming courses at LUT have been problematic for some years: only 54%
of the 186 students registered for the courses in fall 2006 were taking it for the first time and 21%
of the students had registered for the courses previously at least twice. To overcome this problem,
a major revision was undertaken in summer 2006 including a move from C to Python, inclusion
of the roles of variables concept, integration of the weekly assignments and quizzes with the
course project, development of a Finnish language programming guide for the students
(Kasurinen, 2006), and aligning the course contents with ACM/IEEE Computing Curricula 2001
(Joint Task Force for Computing Curricula, 2001). Since many students were clearly not grasping
the fundamentals, the new course focuses on understanding variables, input and output, iterations,
files, and string handling. Abstraction is introduced through use of basic functions, classes, and
lists.

The key results of the course implementations both in 2005 and 2005 are presented in Table 2.
Since the courses tend to have students who register for the course but do not do any of the as-
signments, Table 2 uses the number of students who completed the first assignment as the refer-
ence point for calculations. Dropout refers to students who did not complete all compulsory as-
signments of the course while exam failure refers to students who completed them all but failed
the exam. Table 2 shows a clear reduction in the exam and overall failure rates in both the
courses. We also asked the students to complete questionnaires both half-way through the course
and at the end. This feedback from the students showed that from a list of sixteen different pro-
gramming topics - including variables and their types and roles, file handling, loops, etc. - the
three easiest things were thought to be input, output, and calculations. Using a four-point scale
(not at all, badly, well enough, excellently) in both the questionnaires with both the courses at
least 94% of the students reported at least well-enough learning of the listed topics. These results
are very encouraging, since in the previous courses using C many students found input and output
very challenging.

Table 2: Key statistics of the course implementations at Lappeenranta in 2005 and 2006

 Course A Course B
 2005 2006 2005 2006
First assignment done 138 129 60 57
All assignments done 69 50 % 85 66 % 51 85 % 35 61 %
Exam & course completed 57 41 % 83 64 % 28 47 % 32 56 %
Dropouts before exam 69 50 % 44 34 % 9 15 % 22 39 %
Exam failures 12 17 % 2 2 % 23 45 % 3 9 %
Overall failures 81 59 % 46 36 % 32 53 % 25 44 %

The last question of both the questionnaires was reserved for qualitative feedback. This question
was answered by about half of the students completing the course, and about half of the replies
included positive feedback on the new course implementation. Students commenting on the lan-
guage change from C to Python reported that in general the change was good and Python was
found to be easier, clearer, and a more interesting language than C. The mid-term feedback in-
cluded more comments on the Python-C –language topic, but final comments also supported the
position that Python is a better fit for an initial course on programming than C. Only one student
noted that he would have preferred a more general language, C++ or Java, as the programming
language for the course. By and large the students did not consider the new course itself to be
easy. Rather, the course was reported to require much more work than other courses and the pro-
gramming assignments were found harder than previously. However, the course was considered

 Nikula, Sajaniemi, Tedre, & Wray

 207

to have changed significantly in a favorable direction, and some senior students even considered
the course to be the best course at LUT.

During the previous years many students wanted to change from the harder course A to course B.
However, this time the course generated movement in the opposite direction. One student wanted
to change from course B to course A since programming had started to interest him to such an
extent that he wanted to change his minor to Computer Science - which requires participating in
course A. Another student reported that she still needed one more course in her Master's Degree,
and since this course had proven so interesting, she wanted to take another programming course
that would be delivered along the same lines as this one. Combining these experiences with the
comments in the feedback that programming can be fun, it seems that the course is changing to a
favorable direction.

In Lappeenranta roles were introduced in lectures, followed by an example animation using
PlanAni. Each role was also explained separately as it came up in the example programs. After
that students were advised to study the roles on their own and ask advice, for example in the
weekly exercises. Two specific encounters with roles can be noticed here: first, in the beginning
of the course one assistant of the course raised serious doubts about the usefulness of the concept.
However, when the course moved to the second half, this person commented spontaneously that
the role concept appears justified and may well help in learning programming. The second obser-
vation comes from the final course feedback, where two students raised concerns about the use-
fulness of the concept. However, both of these students had been programming with the C lan-
guage already before the course – just like the course assistant. Overall the feedback from the use
of the roles concept was positive, but since the whole course has just gone through a major revi-
sion, it is too early to draw more formal conclusions.

Course at Blandford
The introductory programming course at the Royal School of Signals (RSS) at Blandford, Eng-
land forms about half of a software engineering unit within two degree courses. One of the degree
courses is a BSc (Hons) in Telecommunications Systems Engineering. This is an intensive first
degree course compressed into 21 months. It is essentially an electrical engineering degree, with
an emphasis on radio and telecommunications. The other course is an MSc in Communications
and Information Systems Management. It is a one year postgraduate conversion course following
a first degree in a subject unrelated to electrical engineering. Both degrees are accredited and
awarded by Bournemouth University but taught by faculty at RSS.

The Python language is taught as 36 hours of lectures and lab sessions, with further work out of
class. This introduces both procedural and object-oriented programming. After lectures on other
aspects of software engineering, this is followed by a further 18 hours of lab sessions in which the
students are helped to perform one iteration of a software development process (requirements,
design, implementation and test), working in teams of 5 or 6 to build a simple distributed system
for playing a board-game called “robots”.

Lectures are used to introduce Python language constructs which the students then explore in lab
sessions, working through a sequence of “quiz” handouts in which they need to puzzle out what
various fragments of Python code will do when executed. Some earlier exercises also require stu-
dents to construct fragments of code themselves; in later exercises they modify programs and fi-
nally in the “robots” lab session, they write whole programs themselves. Students are encouraged
to work in pairs, discussing the material with each other. Some of the handouts are “walk-
throughs”, acting as a written reminder of how concepts introduced in lectures can be used to
write programs in practice. All of the quizzes and exercises have accompanying “hints and expla-
nations” handouts which are distributed to the students separately. These explanations make

Python and Roles of Variables in Introductory Programming

208

heavy use of the roles concepts introduced in lectures. The textbook by Downey, Elkner, and
Meyers, (2002) had been used in an earlier delivery of this course as the main text. This book was
distributed to students for this course as a supplementary text, and some said that they found it
helpful to have an alternative source of explanations.

Experience with Python at RSS has been very encouraging: compared to previous courses using
Delphi, students seem to find the material more straightforward and are able to achieve more. The
order in which topics were introduced for procedural programming was slightly unconventional
(list-comprehensions, for-loops, while-loops then functions) but feedback from students was en-
tirely positive on this approach.

Experience at RSS with roles in teaching Python has been more limited, only having been used
on one course so far. Students used the role names spontaneously when talking about programs,
and clearly were being helped to find structure in programs by doing so. However, the animation-
based presentation of roles was not used, and it seems as a consequence that the students’ ability
to use roles successfully in program construction was rather limited. Some form of animation will
be used in future courses.

Summary of the Courses and Findings
Experiences with Python have been very similar at all three educational institutions. Students are
able to write working code from the very beginning of the course, they find programming easy
and interesting, they pass exams with good grades, and drop-out rates are small. In all institutions
Python has been found to be a better choice than the language used previously: Java at Joensuu, C
at Lappeenranta, and Delphi at Blandford. This opinion is shared by both teachers and students.
These findings are in line with other experiences reported in the literature (as noted earlier in the
section “Python as a First Programming Language”).

Teachers have, however, voiced some doubts regarding transfer to the next language in the cur-
riculum. At the beginning of their studies, students’ programming knowledge is fragile (Perkins
& Martin, 1986) and changes in syntax may interfere with knowledge of semantics. A shift to
some other language may therefore cause a temporary degeneration in students' ability to author
programs. This question certainly needs further research but while waiting for that to be done, it
is safer not to transfer to a second language during the first year.

Experiences with roles vary among the institutions. In Joensuu, where roles were used exten-
sively during the course, the teachers found roles to help both themselves and students. The lec-
turer reported that roles were a brilliant viewpoint to programming education. At Blandford, the
use of roles was more limited and role-based program animation was not used. Even though stu-
dents were able to use role names in talking about programs, roles were not seen as a tool in pro-
gram design. In Lappeenranta, the roles were not yet used extensively, but both the lecturer and
teaching assistants found the roles useful in clarifying the use of variables. Thus, in the future the
use of roles of variables will be increased in order to further improve the course.

Taken together with the results described in the section “Previous Experiences with Roles”, these
findings seem to suggest that roles are of most help to students when they are continuously refer-
enced in teaching, when they are used in program design during lectures, and when role knowl-
edge is elaborated with role-based animation.

A summary of the courses and their key characteristics is presented in Table 3.

 Nikula, Sajaniemi, Tedre, & Wray

 209

Table 3. Summary of the three course implementations
 Joensuu Lappeenranta Blandford
Length in weeks 6 14 15
Number of lecture and
laboratory hours

24/12 28/28 18/36

Number of students 58 129/57 (A/B courses) 19/5 (BSc/MSc students)
Team size for course
work

Individual assignments Individual assignments Pairs and groups of 5-6
students

Target groups Computer science ma-
jor or minor students
with no previous pro-
gramming courses

All freshmen needing
knowledge of program-
ming

BSc (Hons) in Telecom
Systems Engineering &
MSc in Communications
and IS Management

Course contents Basic programming
concepts; variables and
their roles; no abstrac-
tion mechanisms

Basic programming con-
cepts; variables and their
roles; introduction to
abstraction mechanisms

Basic programming con-
cepts; variables and their
roles; introduction to
abstraction mechanisms
including objects & in-
heritance

Programming para-
digms

Imperative program-
ming

Procedural programming Procedural and object
oriented programming

Previously used lan-
guage

Java C Delphi

Other central ideas Enjoy learning pro-
gramming

Programming process;
quality assurance

Programming process;
quality assurance

Roles of Variables Roles used as a starting
point for program de-
sign. Lectures designed
based on the emer-
gence of roles

Introduced as an aid in
understanding the differ-
ent uses of variables in
programming

Introduced as an aid in
understanding the differ-
ent uses of variables in
programming

Animation PlanAni demo & indi-
vidual study during lab
sessions

Quick PlanAni demo &
individual study

Not used

Observed changes
/improvements with
Python

Students experienced
the joy of discovery
and success

Positive and excited
feedback about pro-
gramming with Python

Material more straight-
forward, students learn
more

Observed problems
with Python

range()-construct com-
plicated and unique to
Python

File handling using ob-
jects & methods

File handling using ob-
jects & methods initially
confusing

Dropout rate 16% 34%/39% (A/B courses) Nil
Exam failure rate 2% 2%/9% (A/B courses) Nil

Roles and Python
Roles had previously been used to teach introductory Pascal and C programming. The authors
expected that roles would be useful in teaching introductory Python classes, an expectation which
has proven entirely correct. The authors also expected that the roles classification would carry
over straightforwardly into Python. This expectation has proven largely correct, but the existing
classification needed a few small changes to make it a more natural fit for Python. The roles
most-recent-holder, most-wanted-holder, gatherer, follower, one-way-flag, temporary and walker
are exactly the same. The roles fixed-value and stepper were slightly modified, and it is not clear

Python and Roles of Variables in Introductory Programming

210

whether there is enough difference between containers and organisers in Python to make a useful
distinction.

Taking fixed-value first, consider the following program fragment:

pii = 3.14
r = input("Enter the radius of a circle: ")
print "The area of the circle is", pii*r*r
By definition both variables pii and r are fixed-values even though pii is assigned with a
literal value and r is obtained as input. Python does not allow us to declare that a variable is a
constant which raises a temptation to reserve the role fixed-value for that purpose in Python. This
raises a problem because in other languages fixed-value refers to variables that are assigned to
only once, and now in Python a new role name would be required. A possible solution is to add a
new role name, constant, and use it in Python to denote fixed-value variables that are assigned
with a literal value and use the role name fixed-value for variables whose value depends on input
but does not change after initialization.

In Python it is very easy to write programs using lists of data:

animals = ["aardvark", "albatross", "bee",
 "antelope", "zebra", "wombat",
 "lion", "giraffe", "elephant",
 "hippo", "rhino", "frog"]
We say that the variable animals is also fixed-value, provided it is not changed by any subse-
quent code in the program, even though animals is a list, and hence is mutable. It is not re-
garded as a container or organiser, unless elements are actually added, removed, or rearranged.
In other languages it may be that the only way to dynamically create a list or array is to make an
empty container and then add elements to it. However, it would be foolish to insist that Python
lists always be regarded as containers merely because of the foibles of other languages.

The most significant change in classification when moving to Python was between what was
called a stepper and what a most-recent-holder. In prior work, most of the variables considered to
be steppers were integer variables, incremented explicitly each time around a loop. However, re-
stricting steppers to only such variables would misclassify most loop variables in Python pro-
grams. Consider, for example, the following Python code which is a literal translation of an ear-
lier Pascal program illustrating a stepper:

multiplier = 1
while multiplier <= 10 :
 print multiplier, "* 3 =", multiplier*3
 multiplier += 1
Although the variable multiplier certainly is a stepper in this example, the above code
fragment is not idiomatic Python. A Python programmer would write that piece of program more
like this:

for multiplier in range(1, 11):
 print multiplier, "* 3 =", multiplier*3
In this example we want to call multiplier a stepper too, because it is basically the same
code, just better written. But this raises a problem, because range(1, 11) is actually a func-
tion call which returns the list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The variable multiplier simply
refers to each element of the list in turn. This is a common pattern in Python.

For example, consider the following code:

 Nikula, Sajaniemi, Tedre, & Wray

 211

animals = ["aardvark", "albatross", "bee",
 "antelope", "zebra", "wombat",
 "lion", "giraffe", "elephant",
 "hippo", "rhino", "frog"]

for animal in animals:
 print animal, "has", len(animal), "characters"
We want to call animal a stepper in this for-loop as well. Because a for-loop can iterate easily
through lists containing any type of element, this is how loop variables in Python for-loops usu-
ally are used. Unlike Pascal or C, it is rare to have a for-loop that iterates through the subscripts to
a list and then uses those subscripts to access the elements. It is far easier to iterate through the
elements directly.

The logical conclusion of this argument is a revised classification of steppers in Python:

• a variable is always a stepper if it is the loop variable of a for-loop (or list
comprehension), and

• sometimes steppers appear in particular circumstances involving while-loops. (But
those other circumstances are rarely seen in practice.)

This means that in many loops, variables which would be classified as most-recent-holders in
other languages will be steppers in Python. This reclassification is actually a realistic reflection of
the nature of for-loops in Python: it is natural to separate out in one place the code which gener-
ates a sequence of items (e.g., animals = […]); then to use a for-loop in another place to ac-
tually process those items (for animal in animals: …). This separation of concerns does
lead to simpler, more understandable code in both places and it seems right that the roles classifi-
cation should be tailored to reflect this Python practice.

The authors found that the roles organiser and container were less obviously different in Python
than in other languages; students also found the distinction somewhat subtle. The main form of
“organisation” that you want to do to an organiser is to either sort the elements into order, or to
reverse them. Both of these operations are built-in methods of Python lists, and hence trivially
easy to achieve. Each data structure requires a construction phase which is typically implemented
by a loop. Thus the construction part (where the data structure is container) is non-trivial whereas
the re-organisation part (where the data structure is organiser) is trivial to implement even though
more important for the functionality of the program. Thus, it is not that there is no difference in
usage between an organiser and a container, it is just that the difference is not clear enough to
justify two separate roles. Thus we suggest that only container is used with Python.

Conclusion
We have described how introductory programming education has been improved in three univer-
sity-level courses. This has resulted in increased student satisfaction, lower drop-out rates, and
better programming skills. The three courses are very different in their length, covered topics, and
background of audience. The common elements in the changes were the adoption of Python as
the first programming language and the introduction of roles of variables as an aid in program
creation and comprehension.

Experiences with Python have been very similar at all three educational institutions. Students are
able to write working code from the very beginning, and they find programming easy and inter-
esting. In all three institutions Python has been found to be a better choice than the language used
previously: Java at Joensuu, C at Lappeenranta, and Delphi at Blandford. This opinion is shared
by both teachers and students.

Python and Roles of Variables in Introductory Programming

212

Experiences with roles vary among the institutions. When roles were used extensively during the
course, the teachers found roles helpful to both themselves and students. With more limited use of
roles, students were able to use role names to talk about programs and to clarify the use of vari-
ables. However, students were unable to use roles as a tool in program design. These findings
suggest that roles are of most help to students if they are uniformly employed in all aspects of
teaching: during lectures, when discussing program design, and especially when elaborated with
role-based animation.

The progression to a second programming language is an important open question. In the first
year, students’ programming knowledge is fragile and introduction of a new language may inter-
fere with programming skills. Further work is required to establish how best to build on the mate-
rial from the first course when introducing other languages, for example Java.

References
Abelson, H., Sussman, G., & Sussman, J. (Eds.). (1996). Structure and interpretation of computer pro-

grams (2nd ed.). Cambridge, MA: MIT Press.

Byckling, P., & Sajaniemi, J. (2006). Roles of variables and programming skills improvement, 37th SIG-
CSE technical symposium on computer science education (SIGCSE 2006) (pp. 413-417). Texas, Hous-
ton, USA: Association for Computing Machinery.

Donaldson, T. (2003). Python as a first programming language for everyone. Paper presented at the West-
ern Canadian Conference on Computing Education, , 1-2 May 2003, Courtenay, BA, Canada.

Downey, A., Elkner, J., & Meyers, C. (2002). How to think like a computer scientist: Learning with Py-
thon. Wellesley, MA: Green Tea Press.

Ehrlich, K., & Soloway, E. (1984). An empirical investigation of the tacit plan knowledge in programming.
In J. C. Thomas & M. L. Schneider (Eds.), Human factors in computer systems. Norwood, NJ: Ablex
Publishing Co.

Guzdial, M. (2003). A media computation course for non-majors. In D. Finkel (Ed.), 8th Annual conference
on innovation and technology in computer science education (pp. 104-108). Thessaloniki, Greece:
ACM Press.

Herrmann, N., Popyack, J. L., Char, B., Zoski, P., Cera, C. D., Lass, R. N., et al. (2003). Redesigning intro-
ductory computer programming using multi-level online modules for a mixed audience, 34th SIGCSE
technical symposium on computer science education (pp. 196-200). Reno, Nevada, USA: ACM Press.

Joint Task Force for Computing Curricula. (2001, 15 December). Computing curricula 2001 computer sci-
ence. Retrieved 29 November 2006, from http://www.acm.org/education/curricula.html

Kasurinen, J. (2006). Python programming guide version 1 (In Finnish) (Manual No. 7). Lappeenranta,
Finland: Lappeenranta University of Technology.

Knuth, D. E. (2005). Art of computer programming, Volume 1, Fascicle 1, The: MMIX -- A RISC computer
for the new millennium. Addison Wesley Professional.

Lefkowitz, R. (2005). The semasiology of open source (part 2). Talk at O'Reilly open source convention
held in Portland, Oregon, August 1-5, 2005. Retrieved 15 November 2006, from
http://www.itconversations.com/shows/detail662.html

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., et al. (2003). Improving the CS1
experience with pair programming, 34th SIGCSE technical symposium on computer science education
(pp. 359-362). Reno, Nevada, USA: ACM Press.

Pane, J. F., & Myers, B. A. (1996). Usability issues in the design of novice programming systems (No.
CMU-CS-96-132). Pittsburgh, Pennsylvania: School of Computer Science, Carnegie Mellon Univer-
sity.

 Nikula, Sajaniemi, Tedre, & Wray

 213

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice programmers. In
E. Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 213-229): Ablex Publishing
Co.

Prechelt, L. (2000). An empirical comparison of seven programming languages. Computer, 33(10), 23-29.

Python Software Foundation. (2006). Python programming language. Retrieved 29 November 2006, from
www.python.org

Radenski, A. (2006). "Python first": A lab-based digital introduction to computer science, 11th annual
SIGCSE conference on innovation and technology in computer science education (pp. 197-201). Bolo-
gna, Italy: ACM Press.

Reges, S. (2006). Back to basics in CS1 and CS2, 37th SIGCSE Technical Symposium on Computer Sci-
ence Education (pp. 293-297). Houston, Texas, USA: ACM Press.

Rich, L., Perry, H., & Guzdial, M. (2004). A CS1 course designed to address interests of women, 35th
SIGCSE Technical Symposium on Computer Science Education (pp. 190-194). Norfolk, Virginia,
USA: ACM Press.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and dis-
cussion. Computer Science Education, 13(2), 137-172.

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs, IEEE
2002 Symposia on Human Centric Computing Languages and Environments (HCC02) (pp. 37-39). Ar-
lington, Virginia, USA: IEEE Computer Society.

Sajaniemi, J. (2006). Roles of variables homepage. Retrieved 17 November 2006, from
http://cs.joensuu.fi/~saja/var_roles/

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of variables in three pro-
gramming paradigms. Computer Science Education, 16(4), 261-279.

Sajaniemi, J., & Kuittinen, M. (2005). An experiment on using roles of variables in teaching introductory
programming. Computer Science Education, 15(1), 59-82.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roles of variables in experts' programming knowledge. In P.
Romero, J. Good, S. Bryant & E. A. Chaparro (Eds.), 17th annual workshop of the psychology of pro-
gramming interest group (PPIG 2005) (pp. 145-159). University of Sussex, Brighton UK: University
of Sussex, UK.

Biographies
Uolevi Nikula received the degree of Doctor of Science (Engineering)
in 2004 from the Lappeenranta University of Technology, Finland.
Since 1999 he has been working at the Lappeenranta University of
Technology as a researcher and senior assistant in software engineer-
ing. His main research interests include software process improvement,
requirements engineering, and diffusion of innovations both in industry
and in education. Before returning to academia he was working as a
programmer, software specialist, and project manager in industry over
five years.

Python and Roles of Variables in Introductory Programming

214

Jorma Sajaniemi received the Licentiate degree in computer science
in 1975 from the University of Helsinki, Finland. Since 1979, he has
been associated with the Department of Computer Science at the Uni-
versity of Joensuu, Finland, as an associate professor and a full profes-
sor. He has obtained industrial experience in Softplan Ltd and Karjalan
Tietovalta Ltd. His main area of research is psychology of program-
ming and he has focused on mental models and cognition-based tool
support in programming.

Matti Tedre received a PhD degree in computer science in 2006 from
the University of Joensuu, Finland. Since 2002 he has been working in
the Department of Computer Science at the University of Joensuu as an
assistant, researcher, and lecturer, and spent two years in South Korea
visiting the universities of Yonsei and Ajou. Earlier he has worked as a
programmer and as a software analyst. His research interests include
social studies of computer science, the history of computer science,
and the philosophy of computer science.

Stuart Wray received a BA in computer science in 1981 and a PhD in
computer science in 1986, both from the University of Cambridge,
U.K. Since then he has worked in research, at ORL and the University
of Cambridge Computer Laboratory, and in product development, at
Virata, Marconi and BAE Systems. He is currently a senior lecturer at
the Royal School of Signals in Blandford.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

