
Journal of Information Technology Education Volume 7, 2008

Editor: Linda Knight

The Effectiveness of Screencasts and
Cognitive Tools as Scaffolding for

Novice Object-Oriented Programmers

Mark J. W. Lee and
Sunam Pradhan

University of Ballarat,
Ballarat, Victoria, Australia

m.lee@ballarat.edu.au
s.pradhan@ballarat.edu.au

Barney Dalgarno
Charles Sturt University,

Wagga Wagga, NSW, Australia

bdalgarno@csu.edu.au

Executive Summary
Modern information technology and computer science curricula employ a variety of graphical
tools and development environments to facilitate student learning of introductory programming
concepts and techniques. While the provision of interactive features and the use of visualization
can enhance students’ understanding and assist them in grasping fundamental ideas, the real diffi-
culty for many students lies in making the transition from relying on the graphical features of
these tools, to actually writing programming code statements in accordance with a set of plain
English instructions.

This article opens with a systematic review of the literature on alternative approaches to teaching
object-oriented programming (OOP) to novice programmers. It then describes the rationale be-
hind an “objects first, class user first” approach to introducing OOP, arguing for the use of inter-
active GUI-based visualization tools such as BlueJ as cognitive tools to allow learners to repre-
sent and manipulate their mental models or schemas. Finally, it reports on a study involving a
cohort of students undertaking an introductory OOP unit in Java. The study investigated the ef-
fectiveness of: (i) the graphical features of BlueJ as a cognitive tool while performing coding
tasks as part of a test; and (ii) the use of screencasts (video screen captures) of BlueJ to provide
scaffolding during learning, which involves the provision of temporary support structures to assist
learners in attaining the next stage or level in their development. The screencasts were used in
conjunction with a series of structured exercises by providing an intermediate stepping stone to
ease the transition to the writing of program code.

The study found no significant effect of screencasts during the learning phase of the study, and no
significant effect of BlueJ during testing. This result runs counter to theoretical predictions and

consequently is important both for re-
searchers focusing on the pedagogy as-
sociated with learning programming as
well as those interested in the broader
applications of animated instructional
resources and cognitive tools.

In the article, the authors postulate a
number of reasons for the lack of sig-
nificant effects to sup-port their hy-
potheses. Firstly, it is possible that

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

Screencasts and Cognitive Tools for Novice OO Programmers

62

some, or perhaps many, participants who had access to BlueJ during the testing phase did not ac-
tually use it to assist them in answering the test questions. Secondly, since the screencasts and
BlueJ were intended to ease students’ transition to code, the data collection was conducted imme-
diately following the participants’ initial exposure to code statements. This gave rise to the possi-
bility that they may not have been ready to attempt the questions framed at a high level of ab-
straction, which accounted for a majority of the test marks. The authors had hypothesized that the
most benefit in providing the screencast-based scaffolding and the use of BlueJ as a cognitive tool
was likely to be gained in assisting students with writing code for English instructions at this high
level of abstraction; however, at this point in the semester they may not have been adequately
prepared to undertake these types of questions, which required them to interpret the high-level
task requirements and decompose them into individual object and class operations that would
achieve the desired outcome (object state).

Further research will need to be carried out to determine whether these hypothesized reasons for
the lack of an identifiable difference between conditions can be supported, whether other factors
are responsible, or whether in fact neither BlueJ screencasts nor the use of BlueJ as a cognitive
tool actually enhance learning. One possible approach to a follow-up study would involve using a
smaller number of students, but carrying out intensive observation during the experiment in order
to determine the degree to which, and ways in which, BlueJ is used. This may include an oral
component incorporating think-aloud protocols (Ericson & Simon, 1993) and/or follow-up inter-
views to gain deeper insight into and understanding of the participants’ thought processes as they
attempt the various questions in the test, as well as to identify gaps in their understanding in rela-
tion to the test questions. In addition to informing on the value of screencasts and cognitive tools
for the learning of programming, such a study would also reveal in greater depth the nature of the
cognitive stages involved in learning to write object-oriented program code from English instruc-
tions.

Keywords: Object-oriented programming, programming pedagogy, objects first, Java, BlueJ,
screencasting, visualization, cognitive tools, scaffolding.

Introduction
The present article describes a project aimed at investigating the use of structured, screencast-
based exercises, in conjunction with the popular BlueJ (Barnes & Kölling, 2002; Kölling, Quig,
Patterson, & Rosenberg, 2003; Kölling & Rosenberg, 2002) development environment, to teach
introductory programming in Java using an “objects first” approach that begins by introducing
object-oriented (OO) programming from the perspective of a class user.

The goal was ultimately to help students become competent in taking a description or set of in-
structions, written in plain English, and implementing it in programming code. Developing the
exercises entailed capturing a series of screencasts, or screen recordings to be delivered over the
Web. Each recording showed classes and objects being manipulated graphically in BlueJ, which
uses a notation based on the Unified Modeling Language (UML). The exercises required the stu-
dents to view the actions being performed in the screencasts and compose semantically equivalent
lines of Java code. They were intended as a stepping-stone to assist students in moving from in-
teracting with classes and objects graphically at runtime through a point-and-click interface, to
writing lines of Java code to achieve similar effects.

Lee, Pradhan, & Dalgarno

 63

Teaching Introductory Object-Oriented Programming

Objects First
Many teachers have found that an “objects first” or “objects early” approach is most effective
when teaching OO programming to beginners (Barnes & Kölling, 2002; Cooper, Dunn, &
Pausch, 2003; Kölling et al., 2003; Kölling & Rosenberg, 2001; Machanick, 2007; Proulx, Raab,
& Rasala, 2002). This is in contrast to the older, more traditional approach of beginning with
structured programming “in the small,” which is suited to teaching procedural languages, but is
considered by many to be less appropriate to the OO paradigm. In an introductory Java program-
ming unit, this approach is typified by the use of a “main” method within which students focus on
writing code, commencing with the all-too-familiar “Hello World” example. The initial emphasis
is on basic/primitive data types and control structures. Object-orientation is deferred to a later
stage, usually no earlier than the fifth or sixth week of the semester, at which time students are
forced to suddenly make the awkward leap to OO and begin to view the procedural statements
they have learned to write in the “big picture” context of methods that implement the responsibili-
ties or behaviors of classes and objects.

Notwithstanding the popularity of the objects first approach, there are certainly critics and skep-
tics of the approach (Astrachan, Bruce, Koffman, Kölling, & Reges, 2005; Bailie, Courtney,
Murray, Schiaffino, & Tuohy, 2003; Bruce, 2005; Lister et al., 2006; Reges, 2006). There is also
no doubt that objects first adds a level of complexity to the teaching and learning process. By div-
ing right into object-orientation, students must come to grips with “many different concepts,
ideas, and skills... almost concurrently. Each of these skills presents a different mental challenge”
(Proulx et al., 2002, p. 66, para. 3). Myriad software tools and even full-blown languages have
been developed to help meet the challenge of an objects first approach (see for example, Barnes
& Kölling, 2002; Bergin, Stehlik, Roberts, & Pattis, 2006; Cooper et al., 2003; Kölling, 1999a,
1999b; Kölling et al., 2003; Kölling & Rosenberg 1996, 2001, 2002; Proulx et al., 2002). These
tools generally have a strong visual/graphical component and incorporate interactivity to reduce
the complexity that novice programmers must overcome, helping them “see” objects in a mean-
ingful context.

Class User versus Class Developer
Students can be required to view OO programming from two perspectives or roles: that of the
“class user” and that of the “class developer.” The class user makes use of the classes developed
by the class developer. In doing so, he/she simply views classes and their instances (objects) as
“black boxes” exposing a set of publicly available operations (methods) that implement the re-
quired functionality. Since these public methods are published in the form of an Application Pro-
gramming Interface (API), the class user need not understand the internal workings of the
classes/objects, including the programming code within each of their methods and the private
members they encapsulate. The API serves as a form of contract or agreement between the class
user and class developer specifying the name, input (parameters), and output (return type) of each
method by means of a method signature.

Many teachers who adopt an “objects first” approach use graphical user interfaces (GUIs) as a
means of introducing Java, thereby placing students in the role of class developers from the out-
set. Although this approach capitalizes on the high appeal of GUIs, in Java it introduces a level of
complexity that makes it prohibitive for all but the strongest students to fully grasp the required
concepts (Koffman & Wolz, 1999). Graphics libraries such as those described in Bruce, Danyluk,
and Murtagh (2001) and Roberts and Picard (1998) may alleviate this problem to an extent.

Screencasts and Cognitive Tools for Novice OO Programmers

64

Smith and Boyd (2001) suggest having students act as class users before requiring them to de-
velop classes. A “class user first” approach (or what is referred to by authors like Meyer (1993)
and Duke (1997) as an “inverse curriculum” approach) is logically sound since in all but the most
trivial applications, class developers need to also make use of classes developed by others when
creating their own classes. Students need not know the details of the classes being used – It is on-
ly necessary to know what types of messages can be sent to a class or object, and the way that
class or object will respond. Moreover, this illustrates and stresses the importance of abstraction
and re-use, two of the main goals of object-oriented software development.

BlueJ as a Cognitive Tool for Novice Object-Oriented
Programmers

Like Smith and Boyd (2001), the authors advocate the use of BlueJ as an environment for teach-
ing Java using an objects first, class user first approach. This is achieved by requiring students to
examine the APIs of provided classes and to explore, investigate, and experiment with the classes
and their instances through the graphical interface of BlueJ. BlueJ provides an integrated envi-
ronment in which the student generally starts with a previously defined set of classes. The project
structure is presented in notation similar to UML. The student can create objects and invoke me-
thods on those objects to explore their behavior. Methods are invoked through context menus ac-
cessed by right-clicking on the relevant class (for static methods, including constructors) or object
(for instance/non-static methods) (See Figure 1). Parameters and return values are entered and
displayed by means of dialog windows. This strategy is effective because it allows students to
familiarize themselves with OO concepts and develop sound intuitions about objects and OO pro-
gramming before becoming concerned with Java language syntax. It is consistent with the general
consensus amongst teachers that the ultimate goal should be to teach programming and not a pro-
gramming language, focusing on the paradigm and methodology rather than the specifics of a
particular language (Kölling, 2005; Luker, 1989, 1994; Zhu & Zhou, 2003).

Figure 1. Methods invoked through context menus

BlueJ provides a graphical interface in which the user can interact directly with classes and ob-
jects and visually observe the resulting effects, thereby making it an excellent tool for demon-

Lee, Pradhan, & Dalgarno

 65

strating object-oriented concepts through both instructor-led demonstration, as well as learner-
directed exploration, investigation, and experimentation. In addition, these features make BlueJ
an ideal cognitive tool by allowing learners to represent and manipulate their cognitive structures
or “mental models” of the object-oriented programming domain. Jonassen (1994) argues for the
use of educational technologies as cognitive tools that provoke “mindful” engagement, rather
than simply as conveyors, tutors, or repositories of information. This mindful engagement can
occur when learners use a computer application to represent their knowledge. Furthermore, cogni-
tive tools facilitate learning through knowledge construction rather than knowledge reproduction,
encouraging learners to engage in generative information processing that involves activating the
appropriate mental models, using them to interpret new information, then integrating the new in-
formation and reorganizing the mental models to form aggrandized models that can be used to
explain, interpret, and/or infer new knowledge (Rumelhart & Norman, 1978).

A major hurdle, if not the most significant hurdle, for many students is making the transition from
manipulating classes and objects within BlueJ’s GUI, to writing Java code statements that achieve
equivalent results. Students are typically expected to do this by writing lines of driver code placed
in one or more methods within a “Test” class. For the novice programmer, writing his/her first
lines of code can be an especially daunting task, and this transition should not be introduced ab-
ruptly, but rather should be a gradual process that is carefully planned and thought out to maxi-
mize the chances of success.

Using Screencast-Based Exercises to Assist Students in
Making the Transition to Code

Overview of Screencasting
The term “screencast” was coined by Udell (2004). A screencast is a digital recording of the ac-
tivity on a computer screen and may be thought of as a sequence of screenshots captured in rapid
succession, to be played back at high speed in order to represent the motion that occurs on a us-
er’s screen over a period of time. In addition to video, screencasts may also contain audio tracks,
which may consist of sound output from the computer whose screen is being recorded, or from an
external source, such as voice narration or music.

While screen recording software products have been in existence for many years, early solutions
produced large files and offered very limited editing capabilities. EDUCAUSE (2006) asserts that
good screencasts depend not only on careful planning, but also on thoughtful and judicious edit-
ing to re-sequence lesson elements, eliminate awkward and unnecessary portions, and craft a fo-
cused, easy-to-follow presentation that makes efficient use of students’ time. Recent products like
Camtasia Studio (Techsmith Corporation, 2007) support more compact, cross-platform file for-
mats suitable for web-based delivery such as Macromedia Flash, and have more sophisticated
editing features allowing changes in sequence, mouse movement, and audio.

Because screencasts can be produced in a variety of formats such as Macromedia Flash, Apple
Quicktime, Windows Media Player, and AVI, they are suited to delivery on a variety of plat-
forms. Screencasts can be delivered via streaming or downloaded in their entirety for later view-
ing. Downloaded content can be transferred to a variety of portable devices such as personal me-
dia players (PMPs) and video-capable iPods (Apple Computer, 2006), creating opportunities for
mobile learning, although the small screens of many portable devices impose restrictions on the
types of material that lend themselves to this kind of application.

Perhaps the most obvious and common uses of screencasting involve demonstrations or tutorials
of software packages. In the programming arena, a natural application of this technology would
be in the creation of web-based lectures demonstrating and explaining, step-by-step, the process

Screencasts and Cognitive Tools for Novice OO Programmers

66

of writing, testing, and debugging code. Bennedsen and Caspersen (2005) highlight the value and
cost-effectiveness of using “process recordings” of an expert programmer (for example, the
teacher) solving a concrete programming problem, thinking aloud as he/she moves along. As
compared with traditional classroom teaching methods such as programming on a blackboard,
presenting finished code on transparencies, or live programming via a data projector, process re-
cordings have the advantage of allowing students to revisit, in part or whole, the development
process for clarification, reinforcement, and revision purposes. Bennedsen and Caspersen (2005)
suggest that these recordings should not be “perfect” – That is, they should not be artificially
planned, scripted, or crafted, but rather should capture the actual programming process as natu-
rally and authentically as possible. This includes the making of errors and their resolution, the
integrated use of the development environment (IDE), referring to online documentation, and so
on. An alternate view is that the process recordings should be scripted and crafted (as in Gries &
Gries, 2001, for example), but in such cases, deliberate errors could be introduced to demonstrate
testing and debugging techniques and processes.

While such applications hold tremendous value, Poindexter (2003) and Pendergast (2006) empha-
size the importance of using active learning techniques and strategies when teaching program-
ming, consistent with a Constructivist philosophy, which emphasizes that students learn best
when they construct a personal understanding based on a continuous process of experience and
critical reflection upon experience (Jonassen, 1991; Piaget, 1973). However, the problems of pure
discovery learning without adequate instructional support have been well documented (see, for
example Mayer, 2004) and accordingly the authors believe that screencasting technology has
considerable potential as a supporting instructional resource, allowing learners to obtain the bene-
fits of active learning tasks without the confusion that can occur when such tasks are employed in
the absence of adequate support. The old mantra “the only way to learn programming is through
practice” comes to mind here. In the authors’ experience, as well as those of numerous col-
leagues, weaker students tend to spend disproportionate amounts of their study time on activities
of secondary importance, favoring behaviorally passive tasks such as reading the textbook/notes
and watching or listening to recorded lectures. They go through great lengths to avoid the sub-
stantial leap from reading about programming to actually writing their own programs, except
where explicitly dictated by the assessment scheme, preferring to attempt theory exercises (e.g.,
multiple-choice questions) or play with the GUI tools provided.

For this reason, the screencast-based exercises should gently but surely encourage students to be-
gin to write their own code, with the recordings providing the necessary scaffolds for learner-
centered, learner-driven activities to be carried out. Scaffolding is a concept that has its roots in
Vygotskyan theory (Vygotsky, 1978), in which a learner’s zone of proximal development (ZPD)
is the gap between a learner’s current or actual development level – at which he/she is able to
solve problems without assistance – and his/her emerging or potential level of development. Scaf-
folding involves systematically providing learners with supportive aids in the form of tools, strat-
egies, and guides within the parameters of their ZPDs, to assist them in progressing to their next,
potential level of development (Brush & Saye, 2001; Dabbagh, 2003). This is typically accom-
plished by initially limiting the complexity of the assigned task, then gradually introducing com-
plexity by removing or “fading” the support provided as learners make progress and acquire the
knowledge, skills, and confidence required to handle the task independently and in its authentic
context (Young, 1993).

Design of Scaffolded Exercises Using BlueJ and Screencasting
As mentioned earlier, the ultimate aim is to have students become competent in taking a descrip-
tion or set of plain English instructions, and implementing it in Java code. This involves translat-
ing between two different representations of a program, and can be denoted English => Java. The

Lee, Pradhan, & Dalgarno

 67

use of BlueJ as described in the previous section is effective in helping students understand ob-
ject-oriented concepts and achieves this by introducing a third, UML-like graphical view or rep-
resentation of a program, which will simply be denoted hereafter as BlueJ. The use of the BlueJ
GUI alone as a cognitive tool for teaching and learning activities only requires the student to
translate between plain English and BlueJ’s graphical representation (English => BlueJ) but does
not provide the necessary scaffolds to gently and gradually introduce students to code. The classic
work of Spohrer and Soloway (1986) indicates that students have difficulties not so much in mis-
conceptions about language constructs (construct-based problems) as in putting the “pieces” of a
program together (plan composition problems). A staged approach incorporating fading levels of
conceptual and procedural scaffolding (Hill & Hannafin, 2001) is needed to assist with the transi-
tion to code.

Table 1 summarizes the distinct features of each of the three representations of a program. Stu-
dents must be conversant in all three representations in order to be able to effectively translate
between them.

Table 1: Differences between the Plain English, BlueJ, and Java code
representations of a program

ENGLISH BLUEJ JAVA

Plain English description or set
of instructions

UML-like representation of
classes and objects

Java code statements

Text-based Visual / graphical Text-based

Compile-time view Run-time view, allowing for in-
teractive object creation and me-
thod calls

Compile-time view

Syntax unimportant – Rules not
enforced by software

Representation is symbolic. Ad-
herence to rules is responsibility
of BlueJ software – Violations
are prevented by user interface
constraints and internal program
logic of BlueJ

Adherence to syntax rules is re-
sponsibility of programmer, but
syntax errors are detected by Java
compiler through the process of
parsing

The researchers hypothesized that by having students complete exercises in which they are given
screencasts showing classes and objects being manipulated in BlueJ’s GUI and are required to
produce snippets of equivalent Java code (BlueJ => Java), they would be better placed to tackle
writing code from plain English instructions (English => Java). For example, the action being
performed in BlueJ in Figure 1 equates to the following line of Java code:

aPerson.printMe();
It was expected that students would find writing code from plain English instructions easier hav-
ing carried out the screencast-based exercises, because they would then make use of an interme-
diate step (English => BlueJ => Java). During the intermediate step, the GUI features of BlueJ
are used as a cognitive tool to aid students in conceptualizing the classes, objects, and actions
through interaction and visualization, before they make an attempt to translate the concepts into
code.

The authors also believed that with sufficient practice, students would be able to “remove the
training wheels” and translate a plain English description directly into code (English => Java).
The intermediate step should become second nature as students become decreasingly reliant on
the cognitive tool, and develop unconscious competence in constructing internal (mental) repre-

Screencasts and Cognitive Tools for Novice OO Programmers

68

sentations of the classes and objects, from which they can derive lines of Java code. Whether or
not this is actually the case will need to be investigated through further research that is beyond the
scope of the present study.

In addition to the above, it should be noted that the plain English instructions may be framed at
varying levels of abstraction. For example, consider following “high level” plain English instruc-
tion:

John Doe purchases Peter Smith’s house for its current value, through a direct debit between their
bank accounts.

This can be expressed as four “lower level” instructions:
1. Get the current value of Peter Smith’s house;

2. Withdraw the amount from John Doe’s bank account;

3. Deposit the amount into Peter Smith’s bank account;

4. Change the ownership of Peter Smith’s house to reflect John Doe as the new owner.

The authors believed that the most benefit in providing the screencast-based scaffolding and the
use of BlueJ as a cognitive tool was likely to be gained in assisting students with writing code for
English instructions at a “high level” of abstraction. This is because the use of scaffolding to sim-
plify object-oriented concepts (conceptual scaffolding) and the planning of the steps/order in
which the various program actions – class instantiation, method invocation, variable assignments,
etc. – are to be executed (procedural scaffolding) frees up some of the learner’s limited cognitive
resources, making them available for allocation to higher-order tasks such as problem-solving and
resolving task requirements into lower-level instructions that are directly implementable as code
statements.

Method
The researchers set out to test the aforementioned hypotheses through a simple experiment, de-
signed to determine whether the following had an effect on students’ ability to translate a set of
plain English instructions into lines of Java code:

1. During a learning phase, completing a series of exercises requiring them to watch screen-
casts of actions being performed in BlueJ and coming up with semantically equivalent
lines of code; and

2. During a testing phase, making use of BlueJ as a cognitive tool to plan and visualize their
responses graphically before attempting to write code.

To this end, participants were recruited and randomly allocated into four groups, depicted in Ta-
ble 2.

Table 2: Groups used in experiment – 2 x 2 factorial design

USE OF BLUEJ IN TEST TASKS

(FACTOR B)

No (0) Yes (1)

No (0) Group S0B0 Group S0B1 USE OF SCREENCAST-
BASED EXERCISES IN
LEARNING TASKS

(FACTOR S) Yes (1) Group S1B0 Group S1B1

Lee, Pradhan, & Dalgarno

 69

All four groups were asked to complete a series of learning tasks designed to teach them to write
simple lines of Java code to instantiate unseen classes and invoke instance (i.e., non-static) meth-
ods given the relevant API documentation. They were then tested on their mastery of this learning
outcome and the results of the groups compared. The experiment was conducted across three tu-
torial class groups (sections), leading to an overall 3 x 2 x 2 design.

Participants and Context
The participants in this study were information technology students studying at one of two cam-
puses located in the Central Business District of Sydney, Australia. They were enrolled in a first-
year introductory programming unit, in which Java was used as the teaching language. A vast
majority of them were international students hailing from upper-middle-class families in the In-
dian subcontinent, with medium levels of household income. Most of the participants were en-
rolled in a Graduate Diploma of Information Technology or Master of Information Technology
program, having completed an undergraduate degree in a different discipline in their home coun-
try. International students enrolled in these degree programs generally apply to the Australian
Government Department of Immigration and Citizenship for permission to work, and upon being
granted this permission are allowed to do so for maximum of 20 hours per week during the aca-
demic semester (Department of Immigration and Citizenship, n. d.).

The study took place in Weeks 3, 4, and 5 of a 12-week semester. At this point in the semester,
the students had undergone an orientation to BlueJ, which included creating a project as well as
adding a provided class to the project and compiling it. They had also been introduced to the
theoretical concepts of classes, objects, attributes, and methods, had exposure to the purpose and
format of Java API documentation, and learned how to instantiate classes and invoke instance
methods using BlueJ’s GUI interface. Although in Week 4 they attended a lecture introducing
basic Java code for instantiation and instance method invocation, they had not had hands-on prac-
tice in writing code themselves.

In all, 38 students participated in the study, 36 males and 2 females. The participants in each tuto-
rial class were randomly allocated to the 4 groups: 8 were allocated to the S0B0 group, 10 were
allocated to the S0B1 group, 9 were allocated to the S1B0 group, and 11 were allocated to the
S1B1 group. (S0B0 and S1B1 contained one female participant each.) The slightly unequal group
sizes were due to the lack of attendance of a small number of students.

Learning Tasks and Procedure
During the Week 3 lab class, all students were asked to complete a set of exercises, which re-
quired them to complete a set of tasks in BlueJ, based on a plain English description (English =>
BlueJ). These tasks involved using BlueJ’s GUI interface to instantiate unseen, provided classes
and invoke methods on the instances interactively. The students had access to the API documen-
tation for the provided classes while completing the exercises. Solutions to the exercises were
provided to allow them to check their work. The solutions were presented as screencasts demon-
strating the actions that needed to be performed in BlueJ to accomplish the required tasks. Most
of the screencasts lasted no more than one minute each.

The main data collection was carried out during the Week 5 lab class. Students were not notified
of the exercise in advance, in order to minimize the possibility of certain participants undertaking
additional study in their own time that would give them an advantage over other participants, the-
reby confounding the results. This class began with a 30-minute “chalk and talk” session review-
ing how to write Java code to perform instantiation and instance method invocation, as well as
how to refer to API documentation to facilitate such tasks. This session incorporated a demonstra-
tion in which the instructor used a sample BlueJ project to model the process of implementing a

Screencasts and Cognitive Tools for Novice OO Programmers

70

plain English instruction as an action in BlueJ’s GUI (English => BlueJ), then writing semanti-
cally equivalent line(s) of Java code (BlueJ => Java). Questioning and active listening techniques
were employed by the instructor to promote student engagement and involvement. Students were
also asked to review the Week 4 lecture notes, which summarized the pertinent points relating to
writing Java code statements for instantiation and instance method invocation. They then pro-
ceeded to attempt to write Java code satisfying the requirements of the aforementioned Week 3
exercises. For each exercise, members of the S1B0 and S1B1 groups were asked to read the plain
English description and view the screencast (i.e., the solution from Week 3 – English => BlueJ
provided as screencast). They were then required to write equivalent lines of Java code (BlueJ =>
Java). The aim was to emphasize the relationships between point-and-click actions carried out
through the GUI interface and the lines of corresponding Java code. The S0B0 and S0B1 groups
were not provided with access to the screencasts, and so were required to write the Java state-
ments without the intermediate step (English => Java). Once again, in the Week 5 exercises the
API documentation for the provided classes was supplied to the students in all four groups, and
the (Java code) solutions were made available to allow them to self-check their answers. The seat-
ing arrangements prevented the members of the control groups from accidentally or intentionally
observing the screencasts on the other students’ screens.

Copies of the data collection instruments used in the learning phase of the study, including the
exercises completed by participants and the accompanying screencasts, are available on a web
site maintained by the authors (Lee, 2008). (A web browser with the Adobe Flash plug-in is re-
quired to view the screencasts.)

Test Tasks and Procedure
On completion of the learning phase of the study, all participants undertook a paper-based test,
copies of which can be downloaded at Lee (2008). This test consisted of eight items, each com-
prising plain English instructions requiring the participants to write lines of Java code to perform
a number of tasks involving instantiation and instance method invocation. The test items were
based on a set of provided, unseen classes, for which all participants were supplied with hard cop-
ies of the API documentation.

Groups S0B1 and S1B1 were asked to first use BlueJ on a computer to visually demonstrate how
the English instructions would be implemented, before attempting to derive equivalent lines of
Java code on paper (English => BlueJ => Java). (Note, they were not allowed to enter code into
the computer to compile or test it in any way. Moreover, the procedures carried out in BlueJ were
not taken into account when scoring responses.) Groups S0B0 and S1B0 were not allowed access
to a computer and were required to write the code directly based on the plain English instructions
(English => Java).

The paper-based responses were scored, with one mark being awarded for each correctly imple-
mented code feature. Half marks were not awarded for partially correct code. The marking
scheme also distinguished between high abstraction level (“H”-type) and low abstraction level
(“L”-type) tasks. The highest possible score was 46, including 13 marks for “L”-type tasks and 33
marks for “H”-type tasks.

To minimize risk to students, neither this test nor the Week 3 and Week 5 learning exercises con-
tributed to their final grade. In addition, all students in the cohort were provided with access to
the learning exercises and their solutions shortly following the data collection required for this
study.

Lee, Pradhan, & Dalgarno

 71

Results
SPSS (Statistical Package for the Social Sciences) was used to perform an analysis of the data
collected. The initial analysis undertaken consisted of a univariate analysis of variance (ANOVA)
using a 3 x 2 x 2 design with access to BlueJ during the test, access to Screencasts during learn-
ing, and Tutorial Group as dependent variables. The test scores (“L”-type, “H”-type, and Total)
were the dependent variables. This analysis, shown in Table 3, indicates that there was no main
effect of BlueJ availability on either “H”-type Score, “L”-type Score, or Total Score. Similarly,
there was no main effect of Screencast availability on either “H”-type Score, “L”-type Score, or
Total Score. There was also no significant interaction effect of access to BlueJ and access to
Screencasts, nor was there a significant three-way interaction between BlueJ, Screencasts, and
Tutorial Group.

The means and standard deviations of scores obtained by students with and without access to
Screencasts are shown in Table 4. The means and standard deviations for students with and with-
out access to BlueJ are shown in Table 5.

Table 3: Analysis of Variance for BlueJ x Screencast x Tutorial Group

“L”-TYPE
SCORE

“H”-TYPE
SCORE TOTAL SCORE

df
F p F p F p

Corrected Model 11 0.900 0.553 3.964 0.002 3.031 0.010

Intercept 1 281.005 0.000 109.755 0.000 202.360 0.000

Screencasts 1 0.417 0.524 1.181 0.287 1.087 0.307

BlueJ 1 0.048 0.828 0.963 0.336 0.636 0.432

Tutorial Group 2 2.054 0.149 13.903 <.0005 10.314 0.001

Screencasts x BlueJ 1 0.142 0.709 0.830 0.371 0.261 0.614

Screencasts x Tutorial Group 2 1.004 0.380 3.289 0.053 2.726 0.084

BlueJ x Tutorial Group 2 1.380 0.269 0.250 0.781 0.650 0.530

Screencasts x BlueJ x Tutorial Group 2 0.069 0.933 0.972 0.392 0.572 0.571

Error 26

Total 38

Table 4: Comparison of test scores for students provided with screencasts and those not pro-
vided with screencasts during the learning phase

 “L”-TYPE SCORE
(out of 13)

“H”-TYPE SCORE
(out of 33)

TOTAL SCORE
(out of 46)

NO SCREENCASTS (S0)
 (n=18)

Mean: 8.111
Std. Dev.: 2.698

Mean: 9.333
Std. Dev.: 8.338

Mean: 17.444
Std. Dev.: 10.291

SCREENCASTS (S1)
 (n=20)

Mean: 7.550
Std. Dev.: 2.800

Mean: 7.450
Std. Dev.: 5.491

Mean: 15.000
Std. Dev.: 7.434

SCREENCASTS MAIN EFFECT p=0.524
(not significant)

p=0.287
(not significant)

p=0.307
(not significant)

Screencasts and Cognitive Tools for Novice OO Programmers

72

Table 5: Comparison of test scores for students with access to BlueJ and those without access to
BlueJ during the testing phase

 “L”-TYPE SCORE
(out of 13)

“H”-TYPE SCORE
(out of 33)

TOTAL SCORE
(out of 46)

NO BLUEJ (B0)
 (n=17)

Mean: 7.882
Std. Dev.: 2.619

Mean: 8.941
Std. Dev.: 7.084

Mean: 16.824
Std. Dev.: 8.791

BLUEJ (B1)
 (n=21)

Mean: 7.762
Std. Dev.: 2.730

Mean: 7.857
Std. Dev.: 6.981

Mean: 15.619
Std. Dev.: 9.102

BLUEJ MAIN EFFECT p=0.828
(not significant)

p=0.336
(not significant)

p=0.432
(not significant)

As can be seen in Table 3, there was a significant main effect of Tutorial Group on “H”-type
Score and Total Score. Carrying out a Post Hoc analysis using Tukey’s Honestly Significant Dif-
ference (HSD) test showed that students in Tutorial Group 1 performed significantly better than
students in the other two groups on “H”-type questions (p<0.0005), and on Total Score
(p<0.0005), while there was no significant difference between Tutorial Groups 2 and 3 on “H”-
type questions (p=0.691), or on Total Score (p=0.928). The means and standard deviations of
scores for students in each Tutorial Group are shown in Table 6.

Table 6: Comparison of test scores for students in each Tutorial Group

 “L”-TYPE SCORE
(out of 13)

“H”-TYPE SCORE
(out of 33)

TOTAL SCORE
(out of 46)

TUTORIAL GROUP 1 (T1)
 (n=9)

Mean: 9.444
Std. Dev.: 1.740

Mean: 16.667
Std. Dev.: 8.832

Mean: 26.111
Std. Dev.: 10.216

TUTORIAL GROUP 2 (T2)
 (n=12)

Mean: 7.667
Std. Dev.: 2.995

Mean: 4.833
Std. Dev.: 2.480

Mean: 12.500
Std. Dev.: 4.890

TUTORIAL GROUP 3 (T3)
 (n=17)

Mean: 7.059
Std. Dev.: 7.816

Mean: 6.412
Std. Dev.: 4.048

Mean: 13.471
Std. Dev.: 6.296

TUTORIAL GROUP
MAIN EFFECT

p=0.524
(not significant)

p<0.0005
(highly significant)

p=0.001
(highly significant)

There was also an interaction effect between Tutorial Group and access to Screencasts on “H”-
type Score and Total Score, but not “L”-type Score, that approached significance (p=0.053 for
“H”-type Score and p=0.084 for Total Score). Table 7 and Table 8 show the means and standard
deviations of “H”-type and Total Scores respectively, for students in the Screencasts and No
Screencasts groups for each Tutorial Group.

Lee, Pradhan, & Dalgarno

 73

Table 7: Comparison of “H”-type Scores for students provided with Screencasts and those not
provided with Screencasts, for each Tutorial Group

 NO SCREENCASTS
(S0)

(n=18)

SCREENCASTS (S1)
(n=20)

SCREENCASTS
MAIN EFFECT
WITHIN EACH

TUTORIAL GROUP
TUTORIAL GROUP 1 (T1)
 (n=9)

T1S0 (n=5)
Mean: 20.600
Std. Dev.: 6.348

T1S1 (n=4)
Mean: 11.750
Std. Dev.: 9.811

p=0.215
(not significant)

TUTORIAL GROUP 2 (T2)
 (n=12)

T2S0 (n=5)
Mean: 4.400
Std. Dev.: 1.517

T2S1 (n=7)
Mean: 5.143
Std. Dev.: 3.078

p=0.324
(not significant)

TUTORIAL GROUP 3 (T3)
 (n=17)

T3S0 (n=8)
Mean: 5.375
Std. Dev.: 4.307

T3S1 (n=9)
Mean: 7.333
Std. Dev.: 3.808

p=0.436
(not significant)

TUTORIAL GROUP
MAIN EFFECT WITHIN
SCREENCAST /
NO SCREENCAST GROUP

p<0.0005
(highly significant)

p=0.194
(not significant)

Screencasts x
Tutorial Group

interaction effect:

p=0.053
(approaching
significance)

Table 8: Comparison of Total Scores for students provided with Screencasts and those not pro-
vided with Screencasts, for each Tutorial Group

 NO SCREENCASTS
(S0)

(n=18)

SCREENCASTS (S1)
(n=20)

SCREENCASTS
MAIN EFFECT
WITHIN EACH

TUTORIAL GROUP
TUTORIAL GROUP 1 (T1)
 (n=9)

T1S0 (n=5)
Mean: 31.000
Std. Dev.: 6.595

T1S1 (n=4)
Mean: 20.000
Std. Dev.: 11.431

p=0.182
(not significant)

TUTORIAL GROUP 2 (T2)
 (n=12)

T2S0 (n=5)
Mean: 12.800
Std. Dev.: 3.347

T2S1 (n=7)
Mean: 12.286
Std. Dev.: 6.020

p=0.896
(not significant)

TUTORIAL GROUP 3 (T3)
 (n=17)

T3S0 (n=8)
Mean: 11.875
Std. Dev.: 6.621

T3S1 (n=9)
Mean: 15.000
Std. Dev.: 7.434

p=0.416
(not significant)

TUTORIAL GROUP
MAIN EFFECT WITHIN
SCREENCAST /
NO SCREENCAST GROUP

p=0.001
(highly significant)

p=0.327
(not significant)

Screencasts x
Tutorial Group

interaction effect:

p=0.084
(approaching
significance)

Screencasts and Cognitive Tools for Novice OO Programmers

74

Discussion
Further research will need to be carried out to determine the precise reasons why the results of the
study did not support the original hypotheses. The authors envisage that this will entail conduct-
ing a follow-up study in which a smaller number of students will undergo the learning and testing
phases. This time, they will be subject to intensive observation while they complete the test to
determine the degree to which, and ways in which, BlueJ is used. This may include an oral com-
ponent incorporating think-aloud protocols to gain deeper insight into and understanding of the
participants’ thought processes as they attempt the various questions in the test. Additionally, the
participants will be interviewed to ascertain where there were gaps in their understanding, and/or
where they went wrong in relation to the test questions.

At this stage, the authors are only able to speculate as to why the use of BlueJ in the test and the
use of screencasts during learning did not appear to have a significant effect on students’ per-
formance. One possibility is that there was no way of ensuring that students who were given ac-
cess to BlueJ during the testing phase of the study (i.e., groups S0B1 and S1B1) actually made
use of it to help them answer the questions in the test. This could perhaps have been addressed by
requiring the students to submit their BlueJ models as part of the test. Such a strategy to encour-
age compliance with the intentions of the study is likely to have been particularly effective if the
test had been part of the students’ assessment for the subject. The provision of differentiated
learning opportunities for a formal assessment task would, however, have been ethically prob-
lematic. The planned follow up study, which will involve intensive observations of students dur-
ing the learning task and during the test, will help to determine whether the lack of advantage for
those provided with BlueJ during the test was in fact due to many students choosing not to use it.

Additionally, if a student chose not to use BlueJ in the test, any value gained from watching the
screencasts as part of the exercises during the learning phase is likely to have been negated. The
relatively passive nature of the screencasts as a learning resource may have meant that on their
own they were of relatively limited value. That is, it is possible that their primary value would
have been as a scaffold to help students learn to use BlueJ as a cognitive tool during coding. In
fact, for students who chose not to use BlueJ, or who were not given access to BlueJ, the use of
screencasts as scaffolding during learning may have put them at a disadvantage. Such students
carried out the test by going directly from English to Java, but those of them exposed to screen-
casts during learning had experience only in going from BlueJ to Java.

Moreover, when retrospectively returning to their hypothesis that the independent variables were
likely to have the greatest effect on students’ ability to complete the high abstraction level (“H”-
type) questions, the authors considered the possibility that the students may not yet have been
adequately prepared to tackle these types of questions, which accounted for a majority of the
marks on the test. If this was true, the study may have yielded markedly different results if it had
been conducted later in the semester, rather than immediately following the students’ initial intro-
duction to programming code.

Although the differences between the Screencast and No Screencast groups were not significant
when considering students across all Tutorial Groups, or when considering students within either
Tutorial Group 1 or 2 individually, the magnitude of the difference between the Screencast and
No Screencast groups within Tutorial Group 1 deserves some attention. The students in this group
performed substantially better than the students in the other Tutorial Groups, and also had a much
larger variance. It is possible that students with a better understanding of the material find the
screencasts unnecessary – and in fact a hindrance – because of the time spent viewing them and
also because their inclusion denies them of practice in going directly from English to Java. Cau-
tion must be exercised in drawing such a conclusion because the sample sizes in individual

Lee, Pradhan, & Dalgarno

 75

groups were relatively small. Nevertheless, this may be something that could be explored in fur-
ther research.

It should also be noted at this point that Tutorial Group 1 was based on a separate campus to the
other two Tutorial Groups. It is possible that there is great disparity between the profiles of the
typical student at each campus, since the differences in the recruitment systems and processes, in
campus cultures, as well as other factors may have contributed to the attraction and development
of different types and calibers of students. It is also possible that the large variance in ability lev-
els across the student population meant that a larger sample size than 38 would have been re-
quired to be able to see a significant difference between groups, especially if the effect size was
relatively small.

A possible improvement in the learning phase of the study could have been to emphasize to stu-
dents the relationships between the BlueJ actions performed in the screencasts and the corre-
sponding, individual Java code statements. The solutions to the Week 5 exercises were provided
as code blocks or snippets containing several lines of Java code, which were simply presented as
text files. A useful enhancement could have been to show each line of code being typed within
the screencast, timed in such a way as to be synchronized with the corresponding action being
performed in the BlueJ GUI. In implementing this enhancement, however, cognitive load and
“split-attention” considerations must be taken into account, so as to avoid overwhelming the stu-
dent and therefore adversely affecting his/her performance and learning (Chandler & Sweller,
1991, 1992; Mayer, 2003; Sweller, 1988; Sweller, Chandler, Tierney, & Cooper, 1990; Sweller,
van Merrienboer, & Paas 1998).

An explanatory voice narration track could also have been added to the screencasts as a further
aid to students’ understanding of the object-oriented concepts involved and their realization in
both graphical (BlueJ) and program code (Java) forms. Appropriate use of voice narration would
be consistent with Paivio’s (1986; Clark & Paivio, 1991) dual coding theory and Mayer’s (2001)
cognitive theory of multimedia learning, which both advocate the presentation of information in
both visual and verbal form. Like Mayer, the work of Sweller et al. (1998) found that multimedia
instructions are more effective when verbal information is presented auditorily rather than visu-
ally (known as the modality effect). Voice narration could also have been used as part of a sepa-
rate set of instructional screencasts, designed to supplement or replace the “chalk and talk” ses-
sion that preceded the Week 5 learning exercise. There is a vast body of literature available to
help guide instructional design decisions when combining spoken and/or visual text with anima-
tion in the creation of such instructional multimedia applications (for example, see Kalyuga,
2000; Mayer, 1999; Mayer & Moreno, 1998; Sweller et al., 1998).

To summarize then, there are a number of possible reasons that could explain why the study was
unable to find a significant difference in the learning of students provided with screencasts during
learning and those who were not and between students provided with access to BlueJ during test-
ing and those who were not. These include the sample size, the large variance in student abilities,
and most importantly a possible lack of compliance with the intention of the study by students in
the BlueJ group in the way that they completed the test. The planned follow-up study, which will
include intensive observations, will specifically explore this latter issue.

Conclusion and Future Work
The study found no significant effect of the provision of screencasts during learning, nor of the
use of BlueJ during testing, on ability to write Java code given a problem specification in English.
However, the authors are not ready to dismiss the value of screencasts as scaffolding during
learning, nor of BlueJ as a cognitive tool. Rather, more work is required to more intensely explore

Screencasts and Cognitive Tools for Novice OO Programmers

76

the way students go about their learning and coding tasks and the ways in which attending to
screencasts and the use of BlueJ affect their cognitive processing.

Additionally, the researchers plan to study whether their findings generalize to other program-
ming teaching scenarios, including those involving the use of other languages and/or tools. For
example, the research discussed in this article has focused on scaffolding exercises to encourage
students to use BlueJ’s UML-like representation of a Java program as a cognitive stepping-stone.
Although the BlueJ GUI provides for interactive class instantiation and method invocation by the
user, it does not provide visualization of the messages sent between objects and intermediate
changes in object state, that result from the user-initiated actions. What is displayed at any par-
ticular point in time is a snapshot – or static picture – of the current state of the objects and
classes within the project in a UML-like class diagram format. Authors like Ragonis and Ben-Ari
(2005) assert that visualizations of the dynamic aspects such as those supported by the code ani-
mation tool Jeliot (Ben-Ari, Myller, Sutinen, & Tarhio, 2002) are critical to students’ understand-
ing of program flow and execution. Jeliot is capable of displaying animations of method calls,
variables, and operation at each step during the execution process of a Java program. It would be
interesting to see whether similarly structured exercises based around screencasts of such dy-
namic representations are of value to students’ learning of object-oriented programming.

Acknowledgements
The authors would like to acknowledge the support and assistance provided by Professor Sid
Morris of the University of Ballarat, and Dr. Robyn Pierce of the University of Melbourne (pre-
viously with the University of Ballarat). They would also like to thank Dr. Michael Kölling of the
University of Kent, the creator of BlueJ, for his valuable advice and comments in relation to the
project during its early planning and inception stages.

References
Apple Computer. (2006). Apple – iPod Family. Retrieved March 27, 2006, from

http://www.apple.com/ipod/

Astrachan, O., Bruce, K., Koffman, E., Kölling, M., & Reges, S. (2005). Resolved: Objects early has failed.
Paper presented at the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE-
05), St. Louis, MO, February 23-27.

Bailie, F., Courtney, M., Murray, K., Schiaffino, R., & Tuohy, S. (2003). Objects first – does it work?
Journal of Computing Sciences in Colleges, 19 (2), 303-305.

Barnes, D., & Kölling, M. (2002). Objects first with Java – A practical introduction using BlueJ. Engle-
wood Cliffs, NJ: Prentice-Hall.

Ben-Ari, M., Myller, N., Sutinen, E., & Tarhio, J. (2002). Perspectives on program animation with Jeliot. In
S. Diehl (Ed.), Lecture notes in computer science, Volume 2269: Software visualization: International
seminar, Dagstuhl Castle, Germany, May 20-25, 2001; revised papers (pp. 618-621). Berlin: Springer-
Verlag.

Bennedsen J., & Caspersen, M. E. (2005). Revealing the programming process. In J. Dougherty (Ed.), Pro-
ceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’05)
(pp. 186-190). New York, NY: ACM.

Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. (2006). Karel J. Robot: A gentle introduction to the art of
object-oriented programming in Java. Retrieved October 10, 2006, from
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

Bruce, K. B. (2005). Controversy on how to teach CS 1: A discussion on the SIGCSE-members mailing
list. SIGCSE Bulletin, 37 (2), 111-117.

Lee, Pradhan, & Dalgarno

 77

Bruce, K. B., Danyluk, A., & Murtagh, T. (2001). A library to support a graphics-based object-first ap-
proach to CS 1. In I. Russell (Ed.), Proceedings of 32nd SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’01) (pp. 6-10). New York, NY: ACM.

Brush, T., & Saye, J. (2001). The use of embedded scaffolds with hypermedia-supported student-centered
learning. Journal of Educational Multimedia and Hypermedia, 10 (4), 333-356.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and In-
struction, 8(4), 293-332.

Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British
Journal of Educational Psychology, 62(22), 233-246.

Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3),
149-170.

Cooper, S., Dunn, W., & Pausch, R. (2003). Teaching objects-first in introductory computer science. In W.
Dann (Ed.), Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’03) (pp. 191-195). New York, NY: ACM.

Dabbagh, N. (2003). Scaffolding: An important teacher competency in online learning. TechTrends, 47(2),
39-44.

Department of Immigration and Citizenship. (n.d.). Conditions for working while studying. Retrieved
March 3, 2008, from
http://www.immi.gov.au/students/students/working_while_studying/conditions.htm

Duke, R. (1997). In search of the inverse curriculum. In H. Søndergaard & J. Hurst (Eds.), Proceedings of
the 2nd Australasian Computer Science Education Conference (ACSE ’97) (pp. 65-70). New York,
NY: ACM.

EDUCAUSE. (2006). 7 things you should know about screencasting. Retrieved June 5, 2006, from
http://www.educause.edu/ir/library/pdf/ELI7012.pdf

Ericson, K. A., & Simon, H. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT
Press.

Gries, D. & Gries, P. (2001). ProgramLive. New York, NY: Wiley.

Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of re-
source-based learning. Educational Technology Research and Development, 49(3), 37-52.

Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm?
Educational Technology Research and Development, 39(3), 5-14.

Jonassen, D. H. (1994). Technology as cognitive tools: Learners as designers. Retrieved June 3, 2005, from
http://itech1.coe.uga.edu/itforum/paper1/paper1.html

Kölling, M. (1999a). The Blue language. Journal of Object-Oriented Programming, 12(1), 10-17.

Kölling, M. (1999b). Teaching object orientation with the Blue environment. Journal of Object-Oriented
Programming, 12(2), 14-23.

Kölling, M. (2005). Using BlueJ to start an OO intro course. Paper presented at the 36th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE-05), St. Louis, MO, February 23-27.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Com-
puter Science Education, 13(4), 249-268.

Kölling, M., & Rosenberg, J. (1996). An object-oriented program development environment for the first
programming course. In K. J. Klee (Ed.), Proceedings of the 27th SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’96) (pp. 83-87). New York, NY: ACM.

Screencasts and Cognitive Tools for Novice OO Programmers

78

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. In D. Finkel
(Ed.), Proceedings of the 6th Annual Conference on Integrating Technology into Computer Science
Education (ITiCSE-01) (pp. 33-36). New York, NY: ACM.

Kölling, M., & Rosenberg, J. (2002). BlueJ – The hitchhiker’s guide to object orientation. Mærsk McKin-
ney Moller Institute for Production Technology, University of Southern Denmark, Technical Report
2002, No. 2. Retrieved January 10, 2007, from http://www.mip.sdu.dk/mik/papers/hitch-hiker.pdf

Kalyuga, S. (2000). When using sound with a text or picture is not beneficial for learning. Australian Jour-
nal of Educational Technology, 16 (2), 161-172.

Koffman, E., & Wolz, U. (1999). CS1 using Java language features gently. In B. Manaris (Ed.), Proceed-
ings of the 4th Annual SIGCSE/SIGCUE Joint Conference on Integrating Technology into Computer
Science Education (ITiCSE ’99) (pp. 40-43). New York, NY: ACM.

Lee, M. J. W. (2008). BlueJ and screencasting study at UB: Data collection instruments. Retrieved 16 Feb-
ruary 2008, from http://uob-community.ballarat.edu.au/~mlee/bluej_screencasting/

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., et al. (2006). Research perspec-
tives on the objects-early debate. In M. McNally (Ed.), Working group reports from ITiCSE on Innova-
tion and technology in computer science education (ITiCSE-WGR ’06) (pp. 146-165). New York, NY:
ACM.

Luker, P. A. (1989). Never mind the language, what about the paradigm? SIGCSE Bulletin, 21(1), 252-256.

Luker, P. A. (1994). There’s more to OOP than syntax! SIGCSE Bulletin, 26(1), 56-60.

Machanick, P. (2007). Teaching Java backwards. Computers and Education, 48(3), 396-408.

Mayer, R. E. (1999). Multimedia aids to problem-solving transfer. International Journal of Educational
Research, 31(7), 611-623.

Mayer, R. E. (2001). Multimedia learning. New York, NY: Cambridge University Press.

Mayer, R. E. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist,
38(1), 43-52.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psy-
chologist, 59(1), 14-19.

Mayer, R. E., & Moreno, R. (1998). A cognitive theory of multimedia learning: implications for design
principles. Paper presented at the 15th ACM SIGCHI Conference on Human Factors in Computing
Systems (CHI-98), Los Angeles, CA, April 18-23. Retrieved November 5, 2006, from
http://www.unm.edu/~moreno/PDFS/chi.pdf

Meyer, B. (1993). Towards an object-oriented curriculum. Journal of Object-Oriented Programming, 6(2),
76-81.

Paivio, A. (1986). Mental representations: A dual coding approach. Oxford, England: Oxford University
Press.

Pendergast, M. O. (2006). Teaching introductory programming to IS students: Java problems and pitfalls.
Journal of Information Technology Education, 5, 491-515. Retrieved February 14, 2008, from
http://www.jite.org/documents/Vol5/v5p491-515Pendergast128.pdf

Piaget, J. (1973). To understand is to invent: The future of education. New York, NY: Grossman.

Poindexter, S. (2003). Assessing active alternatives for teaching programming. Journal of Information
Technology Education, 2, 257-265. Retrieved February 14, 2008, from
http://www.jite.org/documents/Vol2/v2p257-265-25.pdf

Proulx, V. K., Raab, R., & Rasala, R. (2002). Objects from the beginning – with GUIs. In D. Finkel (Ed.),
Proceedings of the 7th Annual Conference on Integrating Technology into Computer Science Educa-
tion (ITiCSE ’02) (pp. 65-69). New York, NY: ACM.

Lee, Pradhan, & Dalgarno

 79

Ragonis, N., & Ben-Ari, M. (2005). On understanding the statics and dynamics of object-oriented pro-
grams. In J. Dougherty (Ed.), Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’05) (pp. 226-230). New York, NY: ACM.

Reges, S. (2006). Back to basics in CS1 and CS2. In M. Schneider (Ed.), Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’06) (pp. 293-297). New York, NY:
ACM.

Roberts, E. & Picard, A. (1998). Designing a Java graphics library for CS1. In G. Davies & M. OhEigear-
taigh (Eds.), Proceedings of the 3rd Annual SIGCSE/SIGCUE Joint Conference on Integrating Tech-
nology into Computer Science Education (ITiCSE ’98) (pp. 213-218). New York, NY: ACM.

Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring: Three modes of learning.
In J. W. Cotton & R. L. Klatsky (Eds.), Semantic factors in cognition (pp. 37-53). Hillsdale, NJ: Law-
rence Erlbaum.

Smith, P. A., & Boyd, G. (2001). Introducing OO concepts from a class user perspective. Journal of Com-
puting Sciences in Colleges, 17(2), 152-158.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct? Communications of
the ACM, 29(7), 624-632.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2),
257-285.

Sweller, J., Chandler, P., Tierney, P., & Cooper, M. (1990). Cognitive load as a factor in the structure of
technical material. Journal of Experimental Psychology: General, 119(2), 176-192.

Sweller, J., van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educa-
tional Psychology Review, 10(3), 251-296.

Techsmith Corporation. (2007). Camtasia Studio screen recorder for demos, presentations and training.
Retrieved April 28, 2007, from http://www.techsmith.com/camtasia.asp

Udell, J. (2004). Name that genre: Screencast. Retrieved February 17, 2005, from
http://weblog.infoworld.com/udell/2004/11/17.html

Vygotsky, L. S. (1978). Mind and society: The development of higher mental processes. Cambridge, MA:
Harvard University Press.

Young, M. F. (1993). Instructional design for situated learning. Educational Technology Research and De-
velopment, 41(1), 43-58.

Zhu, H. & Zhou, M. (2003) Methodology first and language second: A way to teach object-oriented pro-
gramming. In R. Crocker & G. L. Steele, Jr. (Eds.), Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’03)
(pp. 140-147). New York, NY: ACM.

Biographies
Mark J. W. Lee is an Honorary Research Fellow with the School of
Information Technology and Mathematical Sciences, University of
Ballarat, and an Adjunct Lecturer with the School of Education,
Charles Sturt University. He was previously a Lecturer with the School
of Information Studies, Charles Sturt University. Prior to this he was
Head of the Faculty of Computing and Information Technology, Mar-
tin College. His research focuses on educational technology and e-
learning, most recently instructional uses of “Web 2.0” technologies,
mobile devices and computer games, as well as on the pedagogy of
computer programming. Lee is a Senior Member of the Institute of
Electrical and Electronics Engineers (IEEE), the Australian Computer

Screencasts and Cognitive Tools for Novice OO Programmers

80

Society (ACS), and the Association for Computing Machinery (ACM). He serves as Chair of the
New South Wales Chapter of the IEEE Education Society.

Sunam Pradhan is a Lecturer with the School of Information Tech-
nology and Mathematical Sciences, University of Ballarat, where he
coordinates the Master of Information Technology and Master of In-
formation Technology Studies programs. He was previously a Program
Manager in Information Technology at the Melbourne Institute of
Technology, and has extensive industry experience as an ana-
lyst/programmer. Pradhan’s current research interests are in mobile
and web technologies, specifically mobile transactional middleware to
support web services, as well as in the pedagogy of computing, par-
ticularly in the field of programming. He is a Member of the Australian

Computer Society (ACS).

Barney Dalgarno is an Associate Professor with the School of Educa-
tion, Charles Sturt University, and a Research Fellow with the Centre
for Research in Complex Systems (CRiCS) at the same university. His
research interests lie in desktop virtual reality learning environments,
as well as constructivist computer-assisted learning theories, tech-
niques and tools. His Ph.D. work examined the characteristics of 3D
environments and their potential contributions to spatial learning. Dal-
garno is currently studying the application of brain imaging though
Functional Magnetic Resonance Imaging (fMRI) to interactive multi-
media research, and is also involved in a project funded by the Carrick
Institute for Learning and Teaching in Higher Education on the impli-

cations of teaching the “Net Generation.” He is a Member of the Australasian Society for Com-
puters in Learning in Tertiary Education (ASCILITE), of which he serves on the Executive
Committee.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

